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Abstract
In official statistics, the problem of sampling error is rushed to extremes, when not only results
on sub-population level are required, which is the focus of Small Area Estimation (SAE), but also
missing data arise. When the nonresponse is wrongly assumed to occur at random, the situation
becomes even more dramatic, since this potentially leads to a substantial bias. Even though there
are some treatments jointly considering both problems, they are all reliant upon the guarantee of
strong assumptions on the missingness. For that reason, we aim at developing cautious versions
of well known estimators from SAE by exploiting the results from a recently suggested likelihood
approach, capable of including tenable partial knowledge about the nonresponse behavior in an
adequate way. While we introduce a cautious version of the so-called LGREG-synthetic estimator
in the context of model-based estimators, we elaborate why the approach above does not directly
extend to model-based estimators and proceed with some first studies investigating the obtained
proportions under different missingness scenarios. All results are illustrated through the German
General Social Survey 2014, also including area-specific auxiliary information from the (German)
Federal Statistical Office’s data report.
Keywords: Small area estimation (SAE); LGREG-synthetic estimator; missing data; partial iden-
tification; sensitivity analysis; likelihood; logistic regression; logistic mixed model; German Gen-
eral Social Survey.

1. Introduction

Survey methodology distinguishes between sampling errors and non-sampling errors (cf., e.g. Biemer,
2010). Sampling errors occur, when only a subset, but not the whole population can be included
in a survey, yet the aim is to generalize the results beyond the units that have been sampled. The
sampling error is especially severe if the population is composed of several sub-populations and the
samples drawn from these sub-populations are not large enough to permit a satisfying precision on
sub-population level. A set of methods has been introduced to tackle such situations and is referred
to as Small Area Estimation (SAE). The main approach of SAE is to use additional data sources,
such as administrative records and census data, as auxiliary data in an attempt to increase the effec-
tive sample size (cf., e.g. Münnich et al., 2013; Rao and Molina, 2015).
A common non-sampling error encountering inference is item-nonresponse. Applying the EM-
algorithm and Multiple Imputations are the recent practices (cf., e.g. Little and Rubin, 2014). Both
techniques force point-identifiability, i.e. uniqueness of parameters, by requiring the assumption that
the missingness is occurring randomly (MAR), i.e. independently of the true underlying value of
the variable of interest. Since the MAR assumption is generally not testable and wrongly imposing
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this assumption may cause a substantial bias, results have to be treated with caution.
According to the methodology of partial identification in the spirit of Manski (2003), one is not
damned to insist on strong assumptions to obtain a result at all, but the allowance for partially iden-
tified parameters enables to incorporate tenable knowledge only. In this way, one receives credible,
but imprecise results, which can be refined if additional knowledge about the missingness were
available. Against this background, there are already several approaches refraining from strong as-
sumptions on the missingness process (cf., e.g. Couso and Dubois, 2014; Denœux, 2014). These
cautious procedures also represent a popular field of research of the ISIPTA symposia (cf., e.g. Cat-
taneo and Wiencierz, 2012; Schollmeyer and Augustin, 2015; Utkin and Coolen, 2011). Since we
generally may not conjure information about the missingness process (unless model assumptions
are used, cf. e.g. Couso and Sánchez, 2016; Hüllermeier, 2014), uncertainty due to nonresponse has
to be interpreted as lack of knowledge, such that these approaches, explicitly communicating the
associated uncertainty, are indispensable. In the context of official statistics, this point was recently
stressed by Manski (2015).
Since nonresponse may seriously reduce the already small sample size in SAE, jointly considering
both issues is especially challenging. As far as we know, already existing approaches dealing with
nonresponse in SAE are based on strong assumptions on the missingness process, as MAR or the
missing not at random (NMAR) assumption plus strict distributional assumptions. Thus, consid-
ering a cautious approach for dealing with nonresponse in SAE represents the core of this paper.
To pursue this goal, in Section 2 we start by introducing the notation for the here considered set-
ting, before we give a basic overview about prominent SAE estimators applicable in our situation
in Section 3. Relying on the cautious likelihood approach developed in Plass et al. (2015), the
classical LGREG-estimator from SAE is studied under nonresponse in Section 4. The results are
illustrated by means of the German General Social Survey, introduced in Section 5, where auxiliary
information in terms of totals is inferred from a data report by the German Federal Statistical Office.
Further prominent estimators of SAE, which can not be directly modified by the cautious likelihood
approach in an analogous way, are discussed in Section 6, where some first studies are completed.
Section 7 concludes by summarizing the major points and giving some remarks on further research.

2. Setting

Let the population U under study have a total size ofN units, and be divided intoM non overlapping
domains (areas) Ui, each containing units j, j = 1, . . . , Ni and Ni is the size of Ui, i = 1, . . . ,M .
Let Y be a binary variable of interest that is assumed to have a relation with a set of k precisely
observed categorical covariates X1, . . . , Xk through a certain model. Cross classifying the cate-
gorical covariates forms a k-dimension table with a total number of cells v, where the g-th cell –
representing the g-th subgroup of the population – contains known joint absolute frequency X [g]

i ,
g = 1, . . . , v. To infer about πi, the probability of a certain category of Y in area i, a sample s ∈ S
of size n is selected, such that a sample si of size ni is selected from area i with

∑M
i=1 ni = n.

Within si, sample units j, j = 1, . . . , ni (j ∈ si) are selected with inclusion probability 1/wij ,
where wij are the usual sample weights. Sample values of the covariates, denoted by x1ij , . . . , xkij ,
are assumed to be completely observed, while of sample values of Y , denoted by yij , some are
missing. Accordingly, si is partitioned into si,obs and si,mis that refer to sample units with observed
and unobserved values of Y , respectively. If we additionally split by g, the samples are denoted by
s
[g]
i , s[g]i,obs and s[g]i,mis.
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3. Theoretical Background

SAE techniques result in producing estimators π̂i for area of interest i, l = 1, . . . ,M , that are
either design-based or model-based.1 Here we aim at studying prominent estimators of both types
of estimators.
Design-based estimators are either direct estimators that only use data from the targeted area, or
indirect estimators that use data from other areas as well. The inclusion of data from areas other that
the specified one is justified under the assumption of similarity between the areas, an assumption
made to borrow strength from other areas. The so-called synthetic estimator is a design-based
indirect estimator that estimates the area specific probability πi as

π̂i,SYN ≡ π̂SYN =
1

N

M∑

i=1

∑

j∈si
wijyij , ∀i = 1, . . . ,M , (1)

merging all subsamples together and including sample information about the response variable only.
Since there is no differentiation between areas, it merely serves as a basis for further estimators.

An estimator that employs sample data as well as area specific auxiliary information on the joint
totals X1i, . . . , Xki is the GREG-synthetic estimator (cf. Särdnal et al., 1992), where we here use
its logistic version, the LGREG-synthetic estimator (cf. Lehtonen and Veijanen, 1998), due to the
nature of the binary response variable of interest. Applying the LGREG-synthetic estimator is split
in two steps: Firstly, the regression coefficients β0, β1,. . ., βk are estimated by means of a logistic
regression model

πij =
exp(β0 + β1x1ij + . . . βkxkij + I)

1 + exp(β0 + β1x1ij + . . . βkxkij + I)
, (2)

linking πij , i.e. the probability for individual j, j = 1, . . . , ni in si, i = 1, . . . ,M , to have the value
yij = 1, to the linear predictor containing the individual auxiliary information, where I represents
the term of potential interactions (see later). In this way, we are borrowing strength, receiving global
regression coefficients. Frequently in the area of official statistics, weights are used to correct a
deliberate over/ under-representation of certain respondents with specific characteristics. In these
cases, weighted logistic regression should be chosen. Area-specific information is only used in
a second step: In our setting considering categorical covariates exclusively, the original LGREG-
estimator (cf. e.g. Lehtonen and Veijanen, 1998, p.52) for a certain area of interest i can be expressed
as

π̂i,LGREG =
v∑

g=1

(
π̂[g](X

[g]
i −

∑

j∈si,g
wij) +

∑

j∈si,g
wijyij

)
/Ni (3)

where π̂[g] is the probability of interest in subgroup g, g = 1, . . . , v. The subgroup specific represen-
tation in (3) will turn out to be beneficial in context of developing a cautious version (cf. Section 4).
Due to the strict monotonicity of the response function in (2), in our case of categorical covariates

1. While properties of design-based estimators (e.g. bias and variance) are evaluated under sampling distribution over
all samples in S with population parameters held fixed, model-based estimators usually condition on the selected
sample, and inference regarding them is carried out with respect to the underlying model (cf., e.g. Rao and Molina,
2015).
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the unique relation between β̂0, β̂1, . . . β̂k (I) and π̂[g] can be exploited (as e.g. explained in Plass
et al., 2017). Consequently, we can drop the first step, where the regression coefficients themselves
have to be estimated and directly calculate π̂[g] by involving all samples , hence borrowing strength.
Proceeding this way, generally refers to the choice of a model explicitly accounting for all interac-
tions. This is desirable, since only then the full information about the subgroup specific information,
also provided by the auxiliary information in terms of totals, is used.

Model-based estimators incorporate data from different areas through a model that depends on the
level of aggregation of the auxiliary variables. The well known Fay-Herriot (FH) area-level model,
introduced by Fay III and Herriot (1979) for linear regression, has been further developed for cat-
egorical regression by MacGibbon and Tomberlin (1989). By relying on the logistic mixed model,
they include an area specific random effects ui ∼iid N(0, σ2u) into the linear predictor in (2). In
this way, the between area variation not explained by auxiliary data is represented, while simultane-
ously borrowing strength expressed by the global regression coefficients. Based on this model, we
can make predictions contributing to the final model-based estimators.

4. Cautious Version of Design-based Estimators in Case of Nonresponse

Since the already established ways of dealing with nonresponse in SAE require strong assumptions,
we aim at adapting the presented prominent estimators by striving for a proper reflection of the
available information on the missingness process. For this purpose, we make use of the cautious
approach developed for the more general case of coarse2 categorical data in Plass et al. (2015) and
further extended in Plass et al. (2017). There, an observation model Q is used as a medium to
frame the procedure of incorporating auxiliary information on the incompleteness. Restricting to
the missing data problem and a binary response variable and considering the problem for subgroup
g, g = 1, . . . , v, the modelQ is determined by the set of missingness parameters q[g]na|y, i.e. the prob-
ability associated with refusing the answer (“na”), given a certain subgroup g and the true category3

y ∈ ΩY = {0, 1} of the response variable Y . In the spirit of partial identification, one can start by
incorporating no assumptions4 on q[g]na|y, then restricting them successively by certain conceivable

conditions. The gMAR assumption5, requiring q[g]na|1 = q
[g]
na|0 and point-identifying the parameter of

main interest π[g] may be regarded as an extreme case in this context. The opportunity to integrate
partial knowledge in terms of comparative statements about the missingness processes’ magnitude
(also cf. Nordheim, 1984), such as q[g]na|1 ≤ q

[g]
na|0 turns out to be beneficial in many situations having

only a sketchy idea of the missing data situation.
The cautious approach includes this observation model into a classical categorical likelihood prob-
lem. Therefor, a connection between the parameter π[g] and p[g]y is established via the observation

model, where p[g]y refers to the observed values y ∈ ΩY := ΩY ∪ {na}, thus summarizing the
missing values as a category of its own. The invariance of the likelihood allows to rewrite the log-

2. The data problem only distinguishes between fully observed and completely unobserved values, while coarse data
additionally include partial observations, e.g. in the sense of grouped data (cf. Heitjan and Rubin, 1991).

3. Referring to the framework of analyzing contingency tables, it is natural to drop the reference to individual j.
4. In fact, we confine ourselves to very general assumptions detailed in Plass et al. (2017)
5. Conditioning on subgroup g generalizes the typical MAR assumption.
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likelihood in terms of p[g]y , which can be uniquely maximized, in terms of the parameters of interest
by relying on the theorem of total probability, receiving

`(π[g], q
[g]
na|0, q

[g]
na|1) =n

[g]
1

(
ln(π[g]) + ln(1− q[g]na|1)

)
+ n

[g]
0

(
ln(1− π[g]) + ln(1− q[g]na|0)

)

+ n[g]na

(
ln(π[g]q

[g]
na|1 + (1− π[g])q[g]na|0

)
, (4)

where n[g]1 , n[g]0 and n[g]na refer to the respective observed cell counts within subgroup g. By maxi-
mizing the log-likelihood in (4), we determine the generally set-valued6 estimators. Representing
the one-dimensional projection of these estimators by the bounds of intervals, for the case of no
assumptions on the missingness process, one obtains7

π̂[g] =
n
[g]
1

n
[g]
na + n

[g]
1 + n

[g]
0

, π̂
[g]

=
n
[g]
1 + n

[g]
na

n
[g]
na + n

[g]
1 + n

[g]
0

, q̂
[g]
na|y = 0 , q̂

[g]
na|y =

n
[g]
na

n
[g]
na + n

[g]
y

, (5)

y ∈ {0, 1}. By considering q[g]na|1 = Rq
[g]
na|0, R ∈ R+

0 , assumptions about the missingness can be
incorporated. Specific values about R are associated with a particular missingness scenario, thus
point-identifying π[g]. In this way, partial assumptions, like including R ∈ [R, R] into (4), refine
the intervals in (5). WhileR ∈ [0, 1] corresponds to q[g]na|1 ≤ q

[g]
na|0, R ∈ [1−τ1, 1+τ2], τ1, τ2 ≥ 0,

gives us a cautious version of gMAR, where the degree of cautiousness is given by the definition of
the neighborhood τ1, τ2 (cf. Plass et al. (2017)). In Section 5, results from partial assumptions of
that kind are compared with the ones obtained from imposing no assumptions at all.

We now apply this approach to SAE. By refraining from a subgroup specific analysis and including
sampling weights wij into the result in (5), for the case of including no assumptions we directly
receive the lower and upper bound of the synthetic estimator in (1):

π̂i,SY N =
1

N

M∑

i=1

∑

j∈si,obs
wijyij , π̂i,SY N =

1

N

M∑

i=1

( ∑

j∈si,obs
yijwij +

∑

j∈si,mis

wij

)
. (6)

While the upper bound π̂i,SY N regards all missing values as yij = 1, ∀j ∈ si,mis, i = 1, . . . ,M ,
throughout the lower π̂i,SY N does not (i.e. yij = 0, ∀j ∈ si,mis, i = 1, . . . ,M ).

Thus far, we ignored the information from other variables, but now we investigate the LGREG-
synthetic estimator, hence considering the setting that sample data and area-specific auxiliary infor-
mation in terms of known totals of the joint distribution are available. In order to study the bounds
π̂i,LGREG and π̂i,LGREG, as a starting point, it turns out to be beneficial to express π̂[g] in terms of
yij and to break the summation over all areas into a term for area i∗ 8 of interest and a summation
over all other areas i 6= i∗. With the regularity condition that sampling weights within area i are

6. The mapping relating π̂[g] to p̂[g]y is generally not injective.
7. The result for π[g], sometimes called best-worst interval, conforms to the one e.g. obtained from cautious data com-

pletion (i.e. plugging in all potential precise values consistent with the observation) or sensitivity analysis (cf., e.g.
Kenward et al., 2001).

8. Whenever a differentiation between quantities summing up over all regions and quantities referring to a specific
region is needed, we explicitly write i∗ for the region under consideration.
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equal such that wij = wi,∀j = 1, . . . , ni, and defining n[g] and n[g]i to be respectively the number
of units in s and si existing in subgroup g, g = 1, . . . , v, i = 1, . . . ,M , we have

π̂i∗,LGREG =
v∑

g=1

(( M∑

i=1

∑

j∈s[g]i

yij

n[g]

)(
X

[g]
i∗ −

∑

j∈s[g]
i∗

wi∗j

)
+
∑

j∈s[g]
i∗

wi∗jyi∗j

)
/Ni∗ (7)

=
v∑

g=1

(( M∑

i=1
i 6=i∗

∑

j∈s[g]i

yij

n[g]

)(
X

[g]
i∗ − n

[g]
i∗ wi∗

)
+
∑

j∈s[g]
i∗

yi∗j

n[g]

(
X

[g]
i∗ − w∗i (n

[g]
i∗ + n[g])

))
/N∗i . (8)

All terms including yij are split for units j ∈ s[g]i,obs and j ∈ s[g]i,mis in a next step, where the problem
consists of finding the values of yij for the nonrespondents that minimize (maximize) Equation (8).
Since Equation (8) is a sum of subgroup specific quantities, optimization for each subgroup is suf-
ficient. Provided that X [g]

i∗ ≥ n
[g]
i∗ wi∗ , we can directly infer that the term referring to the areas

i 6= i∗ is minimized (maximized) if as many (few) as possible – restricted by the included miss-
ingness assumption – the yij’s, j ∈ si,mis are equal to zero (one). Otherwise, the other extreme
allocation of zeros and ones should be chosen to obtain the minimum (maximum). Analogous con-
siderations can be accomplished in the term associated with area i∗, now based on the condition
X

[g]
i∗ ≥ wi∗(n

[g]
i∗ + n[g]).

For the situation without imposing missing assumptions, the representation in terms of Equation (8)
is sufficient, since here the extreme allocations of nonrespondents to the values of yij , s

[g]
i,mis, are

clearly seen. To guarantee compliance with the considered missingness assumption beyond these
extreme cases, i.e. when partial assumptions in the sense of R ∈ [R,R] are tenable, it is useful
to express the LGREG estimator in terms of our estimators from the cautious likelihood approach.
Since

∑M
i=1
i 6=i∗

∑
j∈s[g]i

yij
n[g] and

∑
j∈s[g]

i∗

yi∗j
n[g] , appearing in Equation (8) cannot be regarded as esti-

mated probabilities due to the different reference in numerator and denominator, we cannot apply
the cautious likelihood approach in its standard form by exploiting the idea of the representation in
terms of (8). Instead, we split the sums in Equation (8) for j ∈ s[g]i∗,obs (and j ∈ s[g]i,obs) as well as

j ∈ s[g]i∗,mis (and j ∈ s[g]i,mis), receiving the bounds

π̂i∗,LGREG or π̂i∗,LGREG =
v∑

g=1

(
[π̂[g]|π̂[g]](X [g]

i∗ − n
[g]
i∗ wi∗) (9)

+ wi∗
∑

j∈s[g]
i∗,obs

yi∗j + [q̂
[g]
na|i∗1|q̂

[g]
na|i∗1][π̂

[g]
i∗ |π̂

[g]
i∗ ]

∑

j∈s[g]
i∗,mis

wi∗j

)
/N∗i ,

whereq̂[g]na|i∗1π̂
[g]∑

j∈s[g]
i∗
wi∗j is the expected number of nonrespondents in s[g]i∗ with yij = 1 under

the missingness assumption in focus.
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To shortly explain this formula, we here turn to the notation of the background of the cautious ap-
proach (cf. Plass et al., 2017), where the variable giving the observations in sample space ΩY =
ΩY ∪ {na} is denoted by Y .

P̂ (Y = 1|Xg , i,Y = na) ·∑j∈si,g,mis
wij

=
P̂ (Y = 1, X+

g , i,Y = na)

P̂ (Y = na,X+
g , i)

·∑j∈si,g wij

=
P̂ (Y = na|Y = 1, Xg , i) · P̂ (Y = 1, X+

g , i)

P (Y = na,X+
g , i)

·∑j∈si,g wij

=
q̂na|gi1 · π̂gi∑
j∈si,g,mis

wij∑
j∈si,g

wij

·∑j∈si,g wij

= q̂na|gi1 · π̂gi ·
∑

j∈si,g wij

By [π̂[g]|π̂[g]], [π̂
[g]
i∗ |π̂

[g]
i∗ ] and [q̂

[g]
na|i∗1|q̂

[g]
na|i∗1] we denote that the bound has to be chosen minimizing

(maximizing) the whole term for subgroup g and for the corresponding units in area i∗, respectively,
thereby accounting for the fact that π̂[g]i∗ (or π̂

[g]
i∗ ) can be combined with q̂[g]na|i∗1 (or q̂

[g]
na|i∗1) only (cf.

Plass et al., 2017).
Next, we study whether several constellations have to be excluded: The inclusion of π̂[g]i is in
compliance with the conclusions from Equation (8) that extreme points are attained if boundary
allocations are regarded for j ∈ si∗,mis, such that π̂[g]i∗ and π̂

[g]
i∗ in fact produce the extreme scenarios.

Against this, the incorporation of all units into π̂[g] is different from the idea of complete separation
in Equation (8). Since we are forced to give up the disjoint representation from (7), we have to
ensure that units j ∈ s

[g]
i∗,mis, included into the calculation of π̂[g] and π̂[g]i , are not supposed to

have different values yi∗j in π̂[g] and π̂[g]i∗ , which is not guaranteed if all combinations of bounds
are admitted, such that the associated constellation of bounds has to be excluded. To avoid the
inconsistent allocation of units j ∈ s[g]i∗,mis, we now restrict to incorporating π̂[g] (or π̂

[g]
) together

with π̂[g]i∗ and q̂[g]na|i∗1 (or π̂
[g]
i∗ and q̂

[g]
na|i∗1). Since – as stressed earlier – indeed π̂[g]i∗ and π̂

[g]
i∗ is required

to produce a bound for the LGREG, we can conclude that the suggested constellations – and not
estimators referring to an allocation between – has to be chosen. Considering (9), we can infer
that (X

[g]
i∗ − n

[g]
i∗ wi∗) again plays the decisive role in judging whether π̂[g] or π̂

[g]
is needed for the

minimum. Thus, the lower bound of the LGREG estimator should be given by plugging π̂[g], π̂[g]i∗
and q̂[g]na|i∗1 into (9), provided (X

[g]
i∗ ≥ n

[g]
i∗ wi∗); for (X

[g]
i∗ < n

[g]
i∗ wi∗), constellation π̂

[g]
, π̂

[g]
i∗ and

q̂
[g]
na|i∗1 has to be chosen. The upper bound is determined analogously.

To obtain π̂[g], we refer the to likelihood making use of values from all samples, thus one implicitly
does not condition on the area within q̂[g]na|1 as well. Against this, data from samples of area i∗ only is

used to determine π̂[g]i∗ such that also the respective missingness process is assumed to be dependent
on this area. One could take the idea of “borrowing strength” seriously and allow for this different
handling. Alternatively, if this is perceived as an inconsistency, one could avoid it by generally
refraining from this dependence in the estimation of π̂[g].
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5. Application

5.1 The German General Social Survey

In order to illustrate the results, we rely on the data of the German General Social Survey (GGSS;
German abbreviation: ALLBUS) to estimate the model based on the sample as well as on the (Ger-
man) Federal Office of Statistics’ data report giving the auxiliary data in terms of totals.
From 1980 on, the GGSS is biennially collected, where we here refer to the latest accessible wave
of year 2014 (GESIS Leibniz Institute for the Social Sciences, 2016), containing information about
3471 observations of 861 variables. Due to the former division of Germany, substantial differ-
ences in certain issues are notable between the western and the eastern part of Germany, wherefore
comparative studies are worthwhile. To receive meaningful results for social groups in the eastern
subsample, respondents from this part are oversampled, such that weights are required in the analy-
sis (weights in GGSS 2014: 0.564 (East Germany), 1.205 (West Germany), cf. Koch et al. (1994)).
Additionally, since the GGSS is not a simple random sample, and the exact values of the design-
weightswij , j = 1, . . . , ni, i = 1, . . . ,M , are not available for reasons of data protection, we used a
post-stratification weighting scheme that accounts for states’ different population sizes. Therefore,
wij are computed based on population size from each state attributed to state’s own sample size in
the GGSS, accounting also for the East-West weights.
The considered models aim at explaining the response variable, highly affected by nonresponse,
via categorical, completely observed demographic variables. In the application we are interested
in the estimated lower and upper bound of the area-specific poverty risk, i.e. π̂i and π̂i, result-
ing from taking into account all possible missingness assumptions compatible with the observed
data. In this way, we construct the binary response variable with values “poor and “rich” by com-
paring the collected equivalent income measured on the OECD modified scale (V497) with the
poverty risk threshold given by 60% of the median net equivalent income, i.e. 986.65e for year
2014 DESTATIS, Statistisches Bundesamt (2016). The poverty variable shows 454 missing values.
Comparing the proportion of poor respondents obtained from a complete-case analysis, i.e. 21.0%,
with the poverty risk published in the DESTATIS data report, i.e. 16.7%9, the result might either
indicate a comparative large amount of poor respondents in the GGSS or suggest the assumption
that rich respondents tend to refuse to answer. Since in the considered research question one usu-
ally is not aware of any comparables, we refrain from over-weighting the rich respondents, only
considering the mentioned missingness assumption, since this effect is also well known from for-
mer studies (cf., e.g. Tourangeau and Yan, 2007). As covariates we use the highest school leaving
certificate (V86), which – for ease of presentation – is dichotomized, thus distinguishing between
categories “no Abitur”10 (coded by 0) and “Abitur” (coded by 1) only, as well as sex (V81, coded
with 0: male, 1: female). In the GGSS the most fine-grained information about the region is given
by the federal state11 the respondents live in. In this way, the federal states form our small areas
representing a complete partition (i.e. m = M = 17) of the overall domain “Germany”, where we
only observe subsamples from each state. Since our theoretical considerations refer to the situation
of precisely observed values of the covariate(s), we exclude five cases from the original data, thus

9. This percentage is calculated based on the EU-SILC survey. Since both surveys, the EU-SILC and the GGSS, rely
on the same definition of net equivalized income, both percentages can be compared indeed.

10. The “Abitur” is the general qualification for university entrance in Germany.
11. Although Germany is divided into 16 federal states, the GGSS differentiates between 17 ones, additionally distin-

guishing between “former East-Berlin” and “former West-Berlin”.
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no assum. assum. 1 assum. 2

sex, Abitur π̂[g] π̂
[g]

q̂
[g]
na|p π̂

[g]
q̂
[g]
na|p π̂[g] π̂

[g]
q̂
[g]
na|p q̂

[g]
na|p

0, 0 0.18 0.30 0.40 0.20 0.12 0.19 0.22 0.04 0.17
0, 1 0.10 0.22 0.57 0.11 0.13 0.10 0.12 0.04 0.20
1, 0 0.25 0.38 0.35 0.29 0.14 0.26 0.32 0.05 0.19
1, 1 0.11 0.27 0.60 0.13 0.16 0.11 0.14 0.05 0.25

Table 1: Subgroup specific estimator π̂[g] with different assumptions on the missingness behaviour

basing the analysis on the sample with |s| = 3466, |sobs| = 3012, |smis| = 454. The DESTATIS
data report provides the needed domain-specific totals split by the values of the covariate, i.e. X [g]

i ,
i = 1, . . . ,m, g = 1, . . . , v.12

5.2 Results

The area-specific poverty rate is the focus of our illustration. Yet, we explicitly avoid making
conclusions on the poverty in a substance matter sense, considering this application example as a
first illustration of technical aspects of the elaborated cautious estimators only. If no assumption
about the missingness is imposed, we can apply Equation (6) to the (weighted) marginal sample
data, thus obtaining the bounds of the cautious synthetic estimate π̂i,SY N = 0.17 and π̂i,SY N =
0.30 ∀i = 1, . . . ,M . Since we refrain from making assumptions, the estimated true poverty rate
π̂ is included in the interval characterized by the bounds. If we were additionally concerned with
a representative sampling process with regard to “poverty”, even the true parameter π should be
covered. In order to determine the LGREG-synthetic estimator, we consider the model

πij =
exp(β0 + β1 x1ij + β2 x2ij + β1:2x1ijx2ij)

1 + exp(β0 + β1 x1ij + β2 x2ij + β1:2x1ijx2ij)
, (10)

for the sample data, where x1ij and x2ij are the binary variables referring to variable “Abitur” and
“sex”, respectively, and β1:2 is the interaction, modelling the joint effect when both binary variables
are equal to one. Table 1 shows the lower and upper bounds for the subgroup specific estimators,
also under partial assumptions13. Exemplary, we assumed that rich respondents tend to refuse the
income question compared to poor ones, i.e. R ∈ [0, 1] (assum. 1; the upper bound representing
the MAR case), as well as a cautious version of MAR, here incorporating R ∈ [0.3, 1.7] (assum.
2). Although subgroup specific assumptions were feasible, we here impose the same missingness
assumption on all subgroups. These practically weak assumptions already induce a remarkable
refinement of the intervals obtained under no assumptions. Including these bounds of π̂[g] and the

12. Since there should not be any regional differences with regard to covariate sex, the reason for the inclusion of this
covariate rather lies in the interest of illustrating the subgroup specific analysis in a proper way than in an increase of
explanatory power in the subject matter context.

13. Note that q̂[g]
na|p = 0, ∀g = 1, . . . , v, if the first assumption is considered and that π̂[g] and q̂[g]

na|p of the second
assumption throughout equal the estimations of the first one.
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no assum. assum. 1 assum. 2

Federal state π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG π̂i,LGREG

BW 0.19 0.36 0.19 0.22 0.20 0.24
BY 0.12 0.19 0.12 0.13 0.12 0.13
HB 0.16 0.35 0.16 0.19 0.17 0.19
HH 0.08 0.21 0.08 0.10 0.09 0.12

Table 2: Bounds for the LGREG-synthetic estimator under various missingness assumptions

area-specific totals from the data report into (9), accounting for the preceding considerations made
there, the area-specific bounds of the LGREG-synthetic estimator in Table 2 14 are obtained.

6. First Studies Towards a Cautious Model-based Estimator

Until now, we focused on models dealing with the small sample size by incorporating observations
from other areas on the one hand and area-specific auxiliary information on the other hand. To
account for between-area variation beyond that explained by auxiliary variables, mixed models
establish a basis (cf. Section 3). Since we aim at applying the cautious likelihood approach, we
consider the likelihood function in the mixed model context first. Generally, the marginal likelihood
of the i-th area, is received by averaging over the distribution of the random effects ui, that is,

Li(β0, . . . , βk, σ
2
u) =

∫
p(yi1, . . . , yini |β0, . . . , βk, ui) · f(ui| σ2u)dui , (11)

where p(yi1, . . . , yini |β0, . . . , βk, ui) is the Bernoulli probability distribution in our case and f(ui|σ2u)
is the density of the random effect with parameter σ2u (cf., e.g. Booth and Hobert, 1999). The full
marginal likelihood function from all M areas is then determined by

∏M
i=1 Li(β0, . . . , βk, σ

2
u). Al-

most always Li(β0, . . . , βk, σ2u) in (11) involves intractable integrals, wherefore numerical methods
are required to maximize the likelihood. Consequently, the cautious likelihood approach that served
as the basis for a careful inclusion of auxiliary information on the missingness process in Section 4
is stretched to the limits of its direct applicability if model-based estimators are of interest.
Nevertheless, we proceed with some studies to get a first impression about the predictions obtained
from a mixed model if refrained from strong assumptions on the missingness process. Since the
random effects ui and the regression coefficients are estimated simultaneously with the aid of ap-
proximation methods, we can no longer establish a direct connection between the subgroup specific
probabilities and the regression coefficients, as we did in Section 4. Hence, we here start with a first
sensitivity analysis, estimating β0, . . . , βk and ui under different types of missingness mechanisms.
Since for a part of our research question, i.e. getting a first impression about the bounds of the es-
timated random effects, an area-specific missingness behaviour is of high interest, we simplify the
data bases classifying the federal states into four regions (“northeast”,. . . , “southwest”), thus sub-
stantially reducing the scenarios that have to be considered within an corresponding missing type.
Moreover restricting to covariate “Abitur” (yes/no), we investigate the impact of for two different

14. We use the official abbreviations of the federal states, here BW and BY for Baden-Wuerttemberg and Bavaria, and
HB and HH for the federal city states (hanse town (H)) Bremen and Hamburg.
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Figure 1: Sensitivity analysis under different types of missingness scenarios

missing types over a grid of values: The first missing type requires independence on the values of
the covariates, whereas the second types depends on the covariate and the area.
While the estimated random effects tend to show no systematic reaction to different missingness
scenarios, the regression estimates (cf. Figure 1), attain the bounds in the extreme missingness sit-
uations. Consequently, by focusing on the scenarios that either regard all or no missing values as
yij = 1, we apparently can at least give an estimator based on the best-worst-case estimation of
the regression coefficients, here denoted by π̂β ∈ [π̂β, π̂

β
]. For this purpose, we use β̂0, . . . , β̂k, ûi

obtained for the extreme cases to determine the individual prediction bounds. Again, in our cate-
gorical case it turns out to be sufficient to calculate the bounds of π̂[g],β , now not only split by the
values of the covariate, but also the region. Using π̂ [̂g],β and the area-specific totalsX [g]

i , the bounds
of a model-based estimator, relying on the best-worst estimation of β, can be calculated.

7. Conclusion

By exploiting the cautious likelihood approach (cf. Plass et al., 2015), we presented an opportu-
nity to adapt the LGREG-synthetic estimator for nonresponse, without the need of strict and often
practically untenable assumptions about the missingness process. The included observation model
is a powerful medium to make use of frequently available, partial assumptions about the missing-
ness, where results from the application example corroborated that very weak assumptions may
already suffice to substantially refine the original results. Although some first investigations of cau-
tious model-based estimators were accomplished, due to the technically different situation, a more
detailed study should be part of future research. In addition, comparing the magnitude of both prin-
cipally differing sources of uncertainty induced by the problems in focus (i.e. sampling uncertainty
as well as lack of knowledge associated to SAE and nonresponse, respectively) is notably worth-
while. For this purpose, uncertainty regions (cf. Vansteelandt et al., 2006), covering both types of
uncertainties, should be investigated. The cautious likelihood approach shows to be promising in
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this context, providing an intuitive possibility to adapt classical confidence intervals for partially
identified parameters (cf. Plass et al., 2017).
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E. Hüllermeier. Learning from imprecise and fuzzy observations: Data disambiguation through
generalized loss minimization. Int. J. Approx. Reasoning, 55:1519–1534, 2014.

M. Kenward, E. Goetghebeur, and G. Molenberghs. Sensitivity analysis for incomplete categorical
data. Stat. Modelling., 1:31–48, 2001.

A. Koch, S. Gabler, and M. Braun. Konzeption und Durchführung der “Allgemeinen
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