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Coarse data & regression analysis

Coarse data:
Data are not observed in the resolution originally intended in the

subject matter context

Categorical regression analysis:

Modelling the (not necessarily causal) relation between some
covariates X (input variables) and a dependent categorical
variable Y (output variable)

Here considering . . .
. . . Y is partly only observed in a coarse(ned) way (Y)
. . . precisely observed covariates
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Outline: Common features

1.) Stressing the distinction between ontic and epistemic data
imprecision

2.) “Disambiguation” strategy

3.) Incorporation of coarsening assumptions

error freeness
superset assumption
coarsening at random
subgroup independence
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Comparison 1

COMPARISON 1:

Distinction between epistemic

and ontic data imprecision
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Epistemic vs. ontic interpretation (Couso, Dubois, Sánchez, 2014)

Epistemic imprecision:

“Imprecise observation of
something precise”

OBSERVABLE LATENT

Coarsening

or

or

or

or =

or =

⇒ Truth is hidden due to the underlying

coarsening mechanism

Ontic imprecision:

“Precise observation of
something imprecise”

or =

or =

⇒ Truth is represented by coarse

observation
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Example of data under ontic imprecision

A B C
Don’t
know

maybe

maybe

AAA

B

not C

Which party are you considering to elect? Ontic imprecision:

“Precise observation of
something imprecise”

or =

or =

⇒ Truth is represented by coarse

observation
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Example of data under ontic imprecision

AAA B C Don’t
know

Which party are you considering to elect?

maybe

maybe

A

B
not C

A or B
Allow for
multiple answers!

Ontic imprecision:

“Precise observation of
something imprecise”

or =

or =

⇒ Truth is represented by coarse

observation
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Analysis for ontic case (Plass, Fink, Schöning, Augustin, 2015)

General analysis:

Interpretation of coarse answers as ontic sets (random sets)
(Couso, Dubois, Sánchez, 2014)

Regard coarse answers like “A or B” as own categories

Extension of state space S of Y to S∗ = P(S) \ {∅} of Y ∗

Multi-label classification

Example: Multinomial logistic regression

For each category s ∈ S∗ = {1, . . . ,m − 1}, m = |S∗|, probabilities of
response Y ∗ given covariates xi are modelled by

P∗(Y ∗i = s | xi ) =
exp(x̃Ti β

∗
s )

1 + Σm−1
r=1 exp(x̃Ti β

∗
r )

with x̃T
i = (1, xT

i ) and for reference category m by

P∗(Y ∗i = m | xi ) =
(
1 + Σm−1

r=1 exp(x̃Ti β
∗
r )
)−1

.
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Illustration by the GLES’13 data (Plass, Fink, Schöning, Augustin, 2015)

Y : first vote (reference category S)

X : religious denomination, most important information source

Coefficient ontic classical

CD G:S CD

intercept 0.33 −1.41 ** −0.12
rel.christ 0.37 ** −0.25 0.52 ***
info.tv −0.02 −0.32 0.25
info.np −0.12 −1.69 ** 0.13

⇒ Own categories for coarse categories
⇒ remarkable differences partly associated with a change in
sign
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Comparison 2

Now: Epistemic data imprecision

COMPARISON 2:
Disambiguation strategy
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A first comparison of the disambiguation strategy

Epistemic imprecision:

“Imprecise observation of
something precise”

OBSERVABLE LATENT

Coarsening

or

or

or

or =

or =

⇒ Truth is hidden due to the underlying

coarsening mechanism

You

Machine Learning

Simultaneous model
identification and data
disambiguation

Generalized loss function

We

Survey statistics

First: information, then:
inference

Likelihood approach
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Hüllermeier (2014) in short

Extension principle:

Consider all models that are compatible with the observations

All models are assessed as equally plausible

Basic idea:

Accounting for model assumptions

“Model induction and data disambiguation go hand in hand”

Instead of “ambiguation” of the learning algorithm (extension
principle), “ambiguation” of the loss functions

⇒ Disambiguation strategy: The most plausible precise value
is the one that minimizes the generalized loss function

12 / 19



Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

Φ : [0, 1]m

argp
xy
L(pxy|| daten)

= p̂xy =
nxy
nx

Observation model

LATENT OBSERVABLE

qy|xy

P(Yi = y|Xi = x)

(error-freeness)

P(Yi = y|Xi = x,Yi = y)

=

πxy := pxy :=

1.) p̂ =
nxy
nx

[0, 1]k

1.) p̂ =
nxy
nx

1.) p̂ =
nxy
nx

ϑ = (πT
xy, q

T
y|xy)

T

unique

P(Yi = y|Xi=x)

Observation model

qy|xy :=

1.) Determine MLE of observed variable distribution

2.) Use connection between both worlds

pxy =
∑
y∈y

(
πxy · qy|xy

)
.

3.) Use invariance of the likelihood

π̂xy∈

[
nx{y}

nx
,

∑
y3y nxy

nx

]
, q̂y|xy∈

[
0,

nxy

nx{y} + nxy

]
.
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Regression context

Estimation of regression coefficients
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Final comparison of disambiguation strategy

You

Model assumptions via
the specification of the
loss function

Learning the data and
the model
simultaneously

We

Including model
assumptions via the
response function

No learning of the
disambigation process

Only external
assumptions about the
coarsening behaviour
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Comparison 3

COMPARISON 3:

Incorporation of
coarsening assumptions
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Comparison between different assumptions

Error freeness, superset assumption, CAR, SI
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Reliable incorporation of auxiliary information

amsmath mathrsfs

R =
qna|x≥

qna|x<
< 1

π̂x< = nx<

nx<+nx≥

Sensitivity analysis
(Vansteelandt, Goetghebeur, Kenward, Molenberghs, 2006)

Partial identification
(Manski, 2003) point

identification

CAR: R=1

qna|x< = qna|x≥

e.g.

R =
qna|x≥

qna|x<

Auxiliary information:

Refined estimators:

e.g.

(Heitjan, Rubin, 1991)

π̂x< ∈ [nx<

nx

,
nx<

nx<+nx≥
]

π̂x< ∈ [nx<

nx
,

nx<+nxna

nx
]
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Comparison: Incorporation of assumptions

You

Superset assumption

Model assumptions

We
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