Categorical regression analysis for coarse data

Julia Plass*, Marco Cattaneo**, Paul Fink*, Georg Schollmeyer*, Thomas Augustin*

*Department of Statistics, Ludwig-Maximilians University and
**School of Mathematics and Physical Sciences, University of Hull

$02^{\text {nd }}$ of December 2016

Coarse data \& regression analysis

Coarse data:

Data are not observed in the resolution originally intended in the subject matter context

Categorical regression analysis:

- Modelling the (not necessarily causal) relation between some covariates X (input variables) and a dependent categorical variable Y (output variable)
- Here considering ...
$\ldots Y$ is partly only observed in a coarse(ned) way (\mathcal{Y})
... precisely observed covariates

Outline: Common features

1.) Stressing the distinction between ontic and epistemic data imprecision
2.) "Disambiguation" strategy
3.) Incorporation of coarsening assumptions

- error freeness
- superset assumption
- coarsening at random
- subgroup independence

COMPARISON 1:

Distinction between epistemic and ontic data imprecision

Epistemic imprecision:
"Imprecise observation of something precise"

LATENT

\Rightarrow Truth is hidden due to the underlying coarsening mechanism

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

Example of data under ontic imprecision

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

Example of data under ontic imprecision

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

General analysis:

- Interpretation of coarse answers as ontic sets (random sets) (Couso, Dubois, Sánchez, 2014)
- Regard coarse answers like "A or B " as own categories
- Extension of state space S of Y to $S^{*}=\mathcal{P}(S) \backslash\{\emptyset\}$ of Y^{*}
- Multi-label classification

Example: Multinomial logistic regression
For each category $s \in S^{*}=\{1, \ldots, m-1\}, m=\left|S^{*}\right|$, probabilities of response Y^{*} given covariates \boldsymbol{x}_{i} are modelled by

$$
P^{*}\left(Y_{i}^{*}=s \mid \mathbf{x}_{i}\right)=\frac{\exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{s}^{*}\right)}{1+\sum_{r=1}^{m-1} \exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{r}^{*}\right)}
$$

with $\tilde{\boldsymbol{x}}_{i}^{T}=\left(1, \boldsymbol{x}_{i}^{T}\right)$ and for reference category m by

$$
P^{*}\left(Y_{i}^{*}=m \mid \mathbf{x}_{i}\right)=\left(1+\sum_{r=1}^{m-1} \exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{r}^{*}\right)\right)^{-1}
$$

- Y : first vote (reference category S)
- X : religious denomination, most important information source

Coefficient	ontic			classical
	CD	$\mathrm{G}: \mathrm{S}$		CD
intercept	0.33	$-1.41^{* *}$		-0.12
rel.christ	$0.37^{* *}$	-0.25		$0.52 * * *$
info.tv	-0.02	-0.32		0.25
info.np	-0.12	$-1.69^{* *}$		0.13

\Rightarrow Own categories for coarse categories
\Rightarrow remarkable differences partly associated with a change in sign

- Y : first vote (reference category S)
- X : religious denomination, most important information source

Coefficient	ontic			classical
	CD	$\mathrm{G}: \mathrm{S}$		CD
intercept	0.33	$-1.41^{* *}$		-0.12
rel.christ	$0.37^{* *}$	-0.25		$0.52 * * *$
info.tv	-0.02	-0.32		0.25
info.np	-0.12	$-1.69 * *$		0.13

\Rightarrow Own categories for coarse categories
\Rightarrow remarkable differences partly associated with a change in sign

Comparison 2

Now: Epistemic data imprecision

COMPARISON 2: Disambiguation strategy

A first comparison of the disambiguation strategy

You

- Machine Learning
- Simultaneous model identification and data disambiguation
- Generalized loss function

We

- Survey statistics
- First: information, then: inference
- Likelihood approach

Hüllermeier (2014) in short

Extension principle:

- Consider all models that are compatible with the observations
- All models are assessed as equally plausible

Basic idea:

- Accounting for model assumptions
- "Model induction and data disambiguation go hand in hand"
- Instead of "ambiguation" of the learning algorithm (extension principle), "ambiguation" of the loss functions
\Rightarrow Disambiguation strategy: The most plausible precise value is the one that minimizes the generalized loss function

LATENT

$$
\begin{gathered}
\pi_{x y}:= \\
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=\mathrm{y} \mid \mathrm{X}_{\mathrm{i}}=\mathrm{x}\right)
\end{gathered}
$$

(error-freeness)
Observation model
$q_{y \mid \times y}:=$ $P\left(\mathcal{Y}_{i}=y \mid X_{i}=x, Y_{i}=y\right)$

OBSERVABLE

$$
\begin{gathered}
\mathrm{P}_{x y}:= \\
\mathrm{P}\left(\mathcal{Y}_{\mathrm{i}}=y \mid \mathrm{X}_{\mathrm{i}}=x\right)
\end{gathered}
$$

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

LATENT

$$
\vartheta=\left(\pi_{x y}^{\top}, \quad \mathbf{q}_{\mathrm{y} \mid \mathrm{xy}}^{\top}\right)^{\top}
$$

OBSERVABLE

$$
\begin{gathered}
p_{x y}:= \\
P\left(y_{i}=y \mid X_{i}=x\right)
\end{gathered}
$$

LATENT

$$
\vartheta=\left(\pi_{\mathrm{xy}}^{\top}, \quad \mathbf{q}_{\mathrm{y} \mid \mathrm{xy}}^{\top}\right)^{\top}
$$

OBSERVABLE

$$
\begin{gathered}
\mathrm{p}_{\mathrm{xy}}:= \\
\mathrm{P}\left(\mathcal{Y}_{\mathrm{i}}=\boldsymbol{v} \mid \mathrm{X}_{\mathrm{i}}=\mathrm{x}\right)
\end{gathered}
$$

1.) Determine MLE of observed variable distribution

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

LATENT

OBSERVABLE

$$
\begin{gathered}
\text { unique } \\
\operatorname{crg}_{p_{x y}} \mathrm{~L}\left(\mathrm{p}_{x y} \mid \text { data }\right) \\
=\hat{\mathrm{p}}_{x y}=\frac{\mathrm{n}_{x y}}{\mathrm{n}_{x}}
\end{gathered}
$$

$$
\Phi:[0,1]^{\operatorname{dim}\left(\Theta_{\text {lat }}\right)} \longrightarrow[0,1]^{\operatorname{dim}\left(\Theta_{\mathrm{obs}}\right)}
$$

1.) Determine MLE of observed variable distribution
2.) Use connection between both worlds

$$
p_{x} \boldsymbol{y}=\sum_{y \in \mathcal{Y}}\left(\pi_{\times y} \cdot q \mathfrak{q}_{\mid \times y}\right) .
$$

LATENT

OBSERVABLE

$$
\begin{gathered}
\arg _{\vartheta(1)} \mathrm{L}\left(\vartheta^{(1)} \mid \text { data }\right) \\
\arg _{\vartheta^{(2)}} \mathrm{L}\left(\vartheta^{(2)} \mid \text { data }\right) \\
\arg _{\vartheta^{(3)}} \mathrm{L}\left(\vartheta^{(3)} \mid \text { data }\right)
\end{gathered}
$$

$$
\Phi:[0,1]^{\operatorname{dim}\left(\Theta_{\text {lat }}\right)} \longrightarrow[0,1]^{\operatorname{dim}\left(\Theta_{\text {obs }}\right)}
$$

1.) Determine MLE of observed variable distribution
2.) Use connection between both worlds

$$
\mathfrak{p}_{x \boldsymbol{y}}=\sum_{y \in \mathfrak{Y}}\left(\pi_{x y} \cdot \mathfrak{q}_{\boldsymbol{y} \mid \times y}\right) .
$$

3.) Use invariance of the likelihood

$$
\hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right], \hat{q}_{y \mid x y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right] .
$$

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

LATENT

OBSERVABLE

$$
\Phi:[0,1]^{\operatorname{dim}\left(\Theta_{\mathrm{lat}}\right)} \longrightarrow[0,1]^{\operatorname{dim}\left(\Theta_{\mathrm{obs}}\right)}
$$

1.) Determine MLE of observed variable distribution
2.) Use connection between both worlds

$$
\mathrm{p}_{\times \mathrm{y}}=\sum_{\mathrm{y} \in \boldsymbol{\mathcal { Y }}}\left(\pi_{\times y} \cdot \mathrm{q} \boldsymbol{y}_{\mid \times y}\right) .
$$

3.) Use invariance of the likelihood

$$
\hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right], \hat{q}_{y \mid \times y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right] .
$$

Estimation of regression coefficients

You

- Model assumptions via the specification of the loss function
- Learning the data and the model simultaneously

We

- Including model assumptions via the response function
- No learning of the disambigation process
- Only external assumptions about the coarsening behaviour

COMPARISON 3:

Incorporation of
coarsening assumptions

Error freeness, superset assumption, CAR, SI

Reliable incorporation of auxiliary information

Comparison: Incorporation of assumptions

You
We

- Superset assumption
- Model assumptions

