Categorical regression analysis for coarse data

Julia Plass*, Marco Cattaneo**, Paul Fink*, Georg Schollmeyer*, Thomas Augustin*

*Department of Statistics, Ludwig-Maximilians University and **School of Mathematics and Physical Sciences, University of Hull

02nd of December 2016

・ロト ・四ト ・ヨト ・ヨト

1/19

Coarse data:

Data are not observed in the resolution originally intended in the subject matter context

Categorical regression analysis:

- Modelling the (not necessarily causal) relation between some covariates X (input variables) and a dependent categorical variable Y (output variable)
- Here considering ...
 - ... Y is partly only observed in a coarse(ned) way (\mathcal{Y})
 - ... precisely observed covariates

- 1.) Stressing the distinction between ontic and epistemic data imprecision
- 2.) "Disambiguation" strategy
- 3.) Incorporation of coarsening assumptions
 - error freeness
 - superset assumption
 - coarsening at random
 - subgroup independence

COMPARISON 1:

Distinction between epistemic and ontic data imprecision

Example of data under ontic imprecision

Example of data under ontic imprecision

General analysis:

- Interpretation of coarse answers as ontic sets (random sets) (Couso, Dubois, Sánchez, 2014)
- Regard coarse answers like "A or B" as own categories
- Extension of state space S of Y to S^{*} = P(S) \ {∅} of Y^{*}
- Multi-label classification

Example: Multinomial logistic regression

For each category $s \in S^* = \{1, ..., m-1\}, m = |S^*|$, probabilities of response Y^* given covariates x_i are modelled by

$$P^*(Y_i^* = s \,|\, \mathbf{x}_i) = \frac{\exp(\tilde{\mathbf{x}}_i^T \boldsymbol{\beta}_s^*)}{1 + \sum_{r=1}^{m-1} \exp(\tilde{\mathbf{x}}_i^T \boldsymbol{\beta}_r^*)}$$

with $\tilde{\boldsymbol{x}}_i^{\mathcal{T}} = (1, \boldsymbol{x}_i^{\mathcal{T}})$ and for reference category \boldsymbol{m} by

$$P^{*}(\mathbf{Y}_{i}^{*}=\boldsymbol{m} \,|\, \mathbf{x}_{i}) = \left(1 + \boldsymbol{\Sigma}_{r=1}^{\boldsymbol{m}-1} \exp(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{r}^{*})\right)^{-1}$$

・ロット (日本) (日本) (日本)

- Y: first vote (reference category S)
- X: religious denomination, most important information source

Coefficient	ontic		classical
	CD	G:S	CD
intercept	0.33	-1.41 **	-0.12
info.tv	-0.02	-0.25 -0.32	0.32
info.np	-0.12	-1.69**	0.13

 \Rightarrow Own categories for coarse categories

 \Rightarrow remarkable differences partly associated with a change in sign

Illustration by the GLES'13 data (Plass, Fink, Schöning, Augustin, 2015)

- Y: first vote (reference category S)
- X: religious denomination, most important information source

Coefficient	ontic		classical
	CD	G:S	CD
intercept	0.33	-1.41 **	-0.12
rel.christ	0.37 **	-0.25	0.52 ***
info.tv	-0.02	-0.32	0.25
info.np	-0.12	-1.69 **	0.13

 \Rightarrow Own categories for coarse categories

 \Rightarrow remarkable differences partly associated with a change in sign

Now: Epistemic data imprecision

COMPARISON 2: Disambiguation strategy

A first comparison of the disambiguation strategy

You

- Machine Learning
- Simultaneous model identification and data disambiguation
- Generalized loss function

We

- Survey statistics
- First: information, then: inference
- Likelihood approach

Extension principle:

- Consider all models that are compatible with the observations
- All models are assessed as equally plausible

Basic idea:

- Accounting for model assumptions
- "Model induction and data disambiguation go hand in hand"
- Instead of "ambiguation" of the learning algorithm (extension principle), "ambiguation" of the loss functions

 \Rightarrow Disambiguation strategy: The most plausible precise value is the one that minimizes the generalized loss function

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

LATENT	OBSERVABLE
$\boldsymbol{\vartheta} = (\boldsymbol{\pi}_{xy}^T, \; \mathbf{q}_{y xy}^T)^T$	$\mathbf{p}_{xy} :=$ $P(\mathcal{Y}_i = \mathbf{y} X_i = \mathbf{x})$

1.) Determine MLE of observed variable distribution

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

- 1.) Determine MLE of observed variable distribution
- 2.) Use connection between both worlds

$$\mathsf{p}_{\mathsf{x}} \mathsf{y} = \sum_{\mathsf{y} \in \mathfrak{Y}} \Big(\pi_{\mathsf{x}\mathsf{y}} \cdot \mathsf{q}_{\mathfrak{Y}|\mathsf{x}\mathsf{y}} \Big).$$

・ロト ・回ト ・ヨト ・ヨト

3

13/19

Cautious ML estimation (Plass, Augustin, Cattaneo, Schollmeyer, 2015)

- 1.) Determine MLE of observed variable distribution
- 2.) Use connection between both worlds

$$\mathsf{p}_{\mathsf{x}} \mathsf{y} = \sum_{\mathsf{y} \in \mathfrak{Y}} \Big(\pi_{\mathsf{x}\mathsf{y}} \cdot \mathsf{q}_{\mathfrak{Y}|\mathsf{x}\mathsf{y}} \Big).$$

3.) Use invariance of the likelihood

$$\hat{\pi}_{xy} \in \left[\frac{n_{x\{y\}}}{n_x}, \frac{\sum_{y \ni y} n_{xy}}{n_x}\right], \quad \hat{q}_{y|xy} \in \left[0, \frac{n_{xy}}{n_{x\{y\}} + n_{xy}}\right].$$

- 1.) Determine MLE of observed variable distribution
- 2.) Use connection between both worlds

$$\mathsf{p}_{\mathsf{x}} \mathsf{y} = \sum_{\mathsf{y} \in \mathfrak{Y}} \Big(\pi_{\mathsf{x}\mathsf{y}} \cdot \mathsf{q}_{\mathfrak{Y}|\mathsf{x}\mathsf{y}} \Big).$$

3.) Use invariance of the likelihood

$$\hat{\pi}_{xy} \in \left[\frac{n_{x\{y\}}}{n_x}, \frac{\sum_{y \ni y} n_{xy}}{n_x}\right], \quad \hat{q}_{y|xy} \in \left[0, \frac{n_{xy}}{n_{x\{y\}} + n_{xy}}\right].$$

Estimation of regression coefficients

Final comparison of disambiguation strategy

You

- Model assumptions via the specification of the loss function
- Learning the data and the model simultaneously

We

- Including model assumptions via the response function
- No learning of the disambigation process
- Only external assumptions about the coarsening behaviour

COMPARISON 3: Incorporation of coarsening assumptions

Comparison between different assumptions

Error freeness, superset assumption, CAR, SI

18/19

Comparison: Incorporation of assumptions

You

We

- Superset assumption
- Model assumptions