Cautious statistical modelling for categorical data under epistemic and ontic data imprecision

Julia Plass, Supervision: Prof. Thomas Augustin

Department of Statistics, Ludwig-Maximilians University

$14^{\text {th }}$ of September 2015
21. DStatG Nachwuchsworkshop, Hamburg

Epistemic imprecision:
"Imprecise observation of something precise"

LATENT

\Rightarrow Truth is hidden due to the underlying coarsening mechanism

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

Epistemic imprecision:
"Imprecise observation of something precise"

LATENT

\Rightarrow Truth is hidden due to the underlying coarsening mechanism

Examples:

- Matched data sets with partially overlapping variables
- Coarsening as anonymization technique
- Missing data as special case

```
Here: PASS-data
Y: income, X: UBII
    \Omega\mathcal{Y}}={{<,\geq,na
    \OmegaX = {0 (no),1 (yes)}
```


OBSERVABLE

LATENT

coarse data
\mathcal{Y}
$p_{2 y}=P(\mathcal{Y}=\mathscr{Y} \mid X=x)$

Main goal:

$$
\boldsymbol{\gamma}=\left(\boldsymbol{q}_{\boldsymbol{y} \mid \boldsymbol{x} \boldsymbol{y}}^{T}, \boldsymbol{\pi}_{\boldsymbol{y}}^{T}\right)^{T}
$$

latent variable Y
for $\mathrm{j}=1, \ldots, \mathrm{~K}-1$
$\pi_{i j}=P\left(Y_{i}=j \mid \mathbf{x}_{i}\right)$

$$
=\frac{\exp \left(\beta_{j 0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{j}\right)}{1+\sum_{s=1}^{K-1} \exp \left(\beta_{s 0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{s}\right)}
$$

for reference category K
$\pi_{i K}=\frac{1}{1+\sum_{s=1}^{K-1} \exp \left(\beta_{s 0}+\mathbf{x}_{i}^{T} \boldsymbol{\beta}_{s}\right)}$
(multinomial logit model)

Maximum-Likelihood estimation of

OBSERVABLE

LATENT

Use random-set perspective and determine ML estimator
$\hat{p}_{x \mathscr{y}}=\hat{P}(\mathcal{Y}=y \mid X=x)$
$\longrightarrow \hat{p}_{x \vartheta y}=\frac{n_{x} \vartheta y}{n_{x}}$

Use the connection
between \boldsymbol{p} and γ

and the invariance of the likelihood under parameter transformations:

$$
\hat{\Gamma}=\{\gamma \mid \Phi(\gamma)=\hat{p}\}
$$

$$
\begin{aligned}
& \hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right] \\
& \hat{q}_{y \mid x y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right]
\end{aligned}
$$

OBSERVABLE

LATENT

Use random-set perspective and determine ML estimator $\hat{p}_{x y}=\hat{P}\left(\mathcal{Y}={ }_{2} \mid X=x\right)$
$\longrightarrow \hat{p}_{x \mathscr{Y}}=\frac{n_{x \mathscr{V}}}{n_{x}}$

and the invariance of the likelihood under parameter transformations:

$$
\hat{\Gamma}=\{\boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma})=\hat{\boldsymbol{p}}\}
$$

$$
\begin{aligned}
& \hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right] \\
& \hat{q}_{y \mid x y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right]
\end{aligned}
$$

OBSERVABLE

LATENT

Use random-set perspective and determine ML estimator $\hat{p}_{x y}=\hat{P}\left(\mathcal{Y}={ }_{2} \mid X=x\right)$
$\longrightarrow \hat{p}_{x \mathscr{Y}}=\frac{n_{x \mathscr{V}}}{n_{x}}$

Use the connection
between p and γ

$$
\Phi(\gamma)=\mathbf{p}
$$

and the invariance of the likelihood under parameter transformations:

$$
\hat{\Gamma}=\{\boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma})=\hat{\boldsymbol{p}}\}
$$

$$
\begin{aligned}
& \hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right] \\
& \hat{q}_{y \mid x y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right]
\end{aligned}
$$

OBSERVABLE

LATENT

Use random-set perspective and determine ML estimator $\hat{p}_{x \vartheta}=\hat{P}\left(\mathcal{Y}={ }_{y} \mid X=x\right)$
$\longrightarrow \hat{p}_{x y}=\frac{n_{x, V}}{n_{x}}$

Use the connection
between p and γ

$$
\Phi(\gamma)=\mathbf{p}
$$

and the invariance of the likelihood under parameter transformations:

$$
\hat{\Gamma}=\{\boldsymbol{\gamma} \mid \Phi(\boldsymbol{\gamma})=\hat{\boldsymbol{p}}\}
$$

$$
\begin{aligned}
& \hat{\pi}_{x y} \in\left[\frac{n_{x\{y\}}}{n_{x}}, \frac{\sum_{y \ni y} n_{x y}}{n_{x}}\right] \\
& \hat{q}_{y \mid x y} \in\left[0, \frac{n_{x y}}{n_{x\{y\}}+n_{x y}}\right]
\end{aligned}
$$

Illustration (PASS data)

$$
\begin{array}{ll}
\hat{\pi}_{0<} \in[0.41,0.64] & \hat{\pi}_{1<} \in[0.10,0.34] \\
\hat{\beta}_{<0} \in[-0.37,0.59] & \hat{\beta}_{<} \in[-1.83,-1.25]
\end{array}
$$

Example of data under ontic imprecision

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

Example of data under ontic imprecision

Ontic imprecision:

"Precise observation of something imprecise"

\Rightarrow Truth is represented by coarse observation

General analysis:

- Interpretation of coarse answers as ontic sets (random sets) (Couso, Dubois, Sánchez, 2014)
- Regard coarse answers like "A or B " as own categories
- Extension of state space S of Y to $S^{*}=\mathcal{P}(S) \backslash \emptyset$ of Y^{*}

Example: Multinomial logistic regression
For each category $s \in S^{*}=\{1, \ldots, m-1\}, m=\left|S^{*}\right|$, probabilities of response Y^{*} given covariates \boldsymbol{x}_{i} are modelled by

$$
P^{*}\left(Y_{i}^{*}=s \mid \mathbf{x}_{i}\right)=\frac{\exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{s}^{*}\right)}{1+\sum_{r=1}^{m-1} \exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{r}^{*}\right)}
$$

with $\tilde{\boldsymbol{x}}_{i}^{T}=\left(1, \boldsymbol{x}_{i}^{T}\right)$ and for reference category m by

$$
P^{*}\left(Y_{i}^{*}=m \mid \mathbf{x}_{i}\right)=\left(1+\sum_{r=1}^{m-1} \exp \left(\tilde{\mathbf{x}}_{i}^{T} \boldsymbol{\beta}_{r}^{*}\right)\right)^{-1} .
$$

- Y : first vote (reference category S)
- X : religious denomination, most important information source

Coefficient	ontic			classical
	CD	$\mathrm{G}: \mathrm{S}$		CD
intercept	0.33	$-1.41^{* *}$		-0.12
rel.christ	$0.37^{* *}$	-0.25		$0.52 * * *$
info.tv	-0.02	-0.32		0.25
info.np	-0.12	$-1.69^{* *}$		0.13

\Rightarrow Own categories for coarse categories
\Rightarrow remarkable differences partly associated with a change in sign

- Y : first vote (reference category S)
- X : religious denomination, most important information source

Coefficient	ontic			classical
	CD	$\mathrm{G}: \mathrm{S}$		CD
intercept	0.33	$-1.41^{* *}$		-0.12
rel.christ	$0.37^{* *}$	-0.25		$0.52 * * *$
info.tv	-0.02	-0.32		0.25
info.np	-0.12	$-1.69 * *$		0.13

\Rightarrow Own categories for coarse categories
\Rightarrow remarkable differences partly associated with a change in sign

- Y : first vote (reference category S)
- X : religious denomination, most important information source

Coefficient	ontic			classical
	CD	$\mathrm{G}: \mathrm{S}$		CD
intercept	0.33	$-1.41^{* *}$		-0.12
rel.christ	$0.37^{* *}$	-0.25		$0.52^{* * *}$
info.tv	-0.02	-0.32		0.25
info.np	-0.12	$-1.69^{* *}$		0.13

\Rightarrow Own categories for coarse categories
\Rightarrow remarkable differences partly associated with a sign change

EPISTEMIC

- Obtain MLE referring to the latent variable via the observation model \mathcal{Q}
- Inclusion of auxiliary information via further restrictions on \mathcal{Q}

Next steps:

- Bayesian approach
- Likelihood-based hypothesis tests, uncertainty regions
- Other "deficiency" processes

ONTIC

- Coarse categories as own categories
\Rightarrow Change in state space
- Statistical methods do not change, only interpretation
- Ontic imprecision in covaraites
- Adaptation to ordinal scale

Q Couso, Dubois, Sánchez.
Random Sets and Random Fuzzy Sets as III-Perceived Random Variables, Springer, 2014.

Heitjan, Rubin.
Ignorability and Coarse Data, Annals of Statistics, 1991.

Manski.

Partial Identification of Probability Distributions, Springer, 2003.
Plass, Fink, Schöning, Augustin.
Statistical modelling in surveys without neglecting the undecided: multinomial logistic regression models and imprecise classification trees under ontic data imprecision, ISIPTA, 2015.

Plass, Augustin, Cattaneo, Schollmeyer.
Statistical modelling under epistemic data imprecision: some results on estimating multinomial distributions and logistic regression for coarse categorical data, ISIPTA, 2015.
Q Vansteelandt, Goetghebeur, Kenward, Molenberghs.
Ignorance and uncertainty regions as inferential tools in a sensitivity analysis, Stat. Sin., 2006.

