
Coarse categorical data under epistemic and
ontologic uncertainty:
Comparison and extension of some approaches

Julia Plaß

Master Thesis

Supervision: Prof. Dr. Thomas Augustin, Dipl.-Math. Georg Schollmeyer
Department of Statistics – University of Munich

July 15, 2013





Abstract

There are different reasons for coarse data, namely epistemic and ontologic un-
certainty. While epistemic uncertainty can be induced by survey specific mea-
sures and problems as preservation of the respondents’ anonymity, indecision
of respondents can cause coarse data under ontologic uncertainty. Although
coarse data are widely present in this way, it is still an open topic how to deal
with data of that kind.
Therefore, in this master’s thesis some methods that partly have been used
in other areas exclusively until now will be investigated and applied in this
context, where it will be concentrated on coarse categorical data. The concept
of coarsening at random and methods as partial identification and sensitivity
analysis can be helpful in connection with the analysis of epistemic uncertainty,
where the theory of random sets and the Dempster-Shafer theory will serve
as the basis for the introduction of the ?-notation that is able to deal with
ontologic uncertainty. Moreover, it will be illustrated by means of simulated
data how a categorical dependent variable that is either coarse because of epis-
temic or ontologic uncertainty can be incorporated within a multinomial logit
model. Finally, a comparison of these modelling approaches will emphasize
the importance of the distinction between these two types of uncertainty.
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1. Introduction to the problem of
coarse data

“Once I make up my mind, I’m full of indecision.”
– Oscar Levant (1906-1972) –

Regardless which area of life is considered, it is characteristic for human be-
ings to balance between several options. Nevertheless, the indecisiveness of
respondents is not reflected in most surveys and instead it is common to force
a precise answer or to provide a ““Don’t know” category” for those that have
not made their decision yet. It is obvious that information is lost if one pro-
ceedes in this way, as even indecision between several possibilities reveals some
information by definitely excluding some options. Thus, it could be worth to
account for this so called coarse data under ontologic uncertainty (Greek: onto
- “being”, logia - “theory”) that can be induced by indecision of respondents.
Data under ontologic uncertainty are coarse by nature, but can be observed in
a precise way. Thereby, it is important to emphasize that these coarse answers
represent the truth, as even the indecisive respondents do not know which of
the possiblities that are consistent with their coarse answer shows the one that
fits best to their preferences. For instance, if a respondent reports to be indif-
ferent between electing party “A” and “B”, he does not know yet if he intends
to elect party “A” or party “B”, but already knows that he will decide against
party “C”.
Data can not only be coarse by nature, but also actually show precise true
values that potentially can only be observed in a coarse way. Data of that
kind are called coarse data under epistemic uncertainty (Greek: epistēmē -
“knowledge”) and there are different reasons for obtaining such data. Here
three reasons, namely the guarantee of anonymization, the prevention of re-
fusals and restricted measurement accuracy, will be addressed in more detail.
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1. Introduction to the problem of coarse data

The capability to record more and more data about all imaginable areas of life
has increased permanently during the last years, so that the need for privacy
and thus anonymization of data is more important than ever (Cormode and
Srivastava 2010, p. 1015). Survey institutes have to follow the instructions
of data protection and hence in many cases questionnaires provide anwers of
rather coarse character. In this way, for instance it is asked for the data in
terms of grouping classes or at least it is ensured to anonymize data after data
collection. As essentially true answers are underlying which are coarsened in
a second step and thus can only be observed in an imprecise way, it is clearly
evident that anonymization generates data under epistemic uncertainty.
If one disregards reasons of data protection for a moment, at the first glance it
seems to be contradictory to coarsen actually precise data in a first step and
deanonymize those data afterwards in order to obtain precise results again.
But especially in case of sensitive questions (e.g. income, drug consumption),
one expects being able to prevent refusals and obtaining more honest answers
by recording coarse instead of precise data.
Moreover, sometimes only coarsened answers of precise values are available,
because some respondents report their answer with restricted accuracy only,
so that for instance data can be rounded or heaped. Rounding is present
in many cases where respondents are required to report a particular metric
value, for instance the time required for commuting between home and work
(e.g. “pairfam”, wave 1, Q227, Nauck, B. and Brüderl, J. and Huinink, J. and
Walper, S. 2013). Therby rounding can be induced either by convenience (e.g.
half an hour instead of 24 min.) or by the inability or limited possibility to
report precise results (e.g. 24 min. and 11 sec instead of 24 min.). Against
this, one is concerned with heaping if data are collected with various levels
of coarseness. Age heaping is a frequently used example (Heitjan and Rubin
1991, p. 2251), as it is reasonable that the age of babies, children and adults
is reported in months, half years and years respectively.
Thus, generally the presence of coarse data under epistemic uncertainty can be
ascribed to measures and problems that are connected with the study design.
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Figure 1.1.: Difference between epistemic and ontologic uncertainty.

As coarse data under epistemic uncertainty show actually true values that po-
tentially can only be observed in a coarsened way, a coarsening mechanism is
underlying in this case. The absence of a coarsening mechanism in the case of
ontologic uncertainty, where data are already of coarse nature, represents one
of the most important differences between those two situations of coarse data,
which are illustrated by means of Figure 1.1. Because of these differences com-
pletely different goals have to be persued in the framework of the corresponding
analyses of data, so that in the context of data under epistemic uncertainty it
is of peculiar interest to consider the underlying coarsening mechanism and to
investigate the true underlying answers, where under ontologic uncertainty a
framework that is able to involve the actually coarse answers is more impor-
tant.
The deliberations and examples that have been presented in the context of
explaining coarse data that are either induced by epistemic or ontologic uncer-
tainty show that coarse data are widely present. Nevertheless, no consensus
has been reached on how to deal with coarse data, wherefore the goal of this
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1. Introduction to the problem of coarse data

thesis will consist of considering and comparing some approaches that address
coarse data under epistemic and ontologic uncertainty. In this framework some
methods that partly have been used in other areas exclusively until now will
be investigated and applied in this context. In order to maintain a clear scope
of this thesis, it will be concentrated on coarse categorical data. For illustra-
tion of most ideas in case of epistemic uncertainty a simple example will be
considered with two true categories “A” and “B”, which are observed as “A”,
“B” or “A XOR B”. “XOR” is a commonly used sign representing “either...or”.
Against this, under ontologic uncertainty the notation will be such that three
categories “{A}”, “{B}” and “{A, B}” can be regarded as true categories,
where the latter one expresses indecision between category “A” and “B”.
For the purpose of pursuing these intentions, it will be proceeded as follows:
In Chapter 2 the basic problem of coarse data under epistemic uncertainty
will be explained, where the simplifying property of “coarsening at random”
as well as partial identification and sensitivity analysis, two procedures that
rely on implying justified assumptions only, will show possible approaches that
try to deal with this question. As the latter two methods are prevalent in the
framework of missing data only, they will be applied in the context of coars-
ened data in this chapter.
Against this, in the context of dealing with ontologic uncertainty, addressed
in Chapter 3, the introduction of the ?-notation, which relies on an analysis
on the power set and allows to represent data that are coarse by nature, is of
peculiar interest. The conceptions of that notation are based on some ideas of
the random set theory and the Dempster-Shafer theory.
After some general approaches for dealing with coarse data under epistemic
and ontologic uncertainty have been investigated, it will be analysed how a
coarse dependent variable can be involved within a regression model. As in
this thesis categorical data are addressed, the multinomial logit model will
represent the basic model in this context.
In Chapter 4 a coarse dependent variable under epistemic uncertainty will be
incorporated into an iid model as well as a multinomial logit model with two
covariates. Thereby, the resulting identification problem and some approaches
of Chapter 2 that try to deal with it will be of main interest. As analysis will
be based on simulated data, true values are available and thus these methods
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can be evaluated by looking at the relative empirical. Moreover, an alternative
imputation based approach will be sketched.
In Chapter 5 an extended multinomial logit model will be proposed that is
able to include a coarse dependent variable under ontologic uncertainty. After
having focused on the particularity of this model in general, for reasons of
consistency the same models as in Chapter 3 will be regarded again. More-
over, some ideas of Dempster-Shafer theory concerning prediction of results
when decisions have been made will be shown, where the implication of some
assumptions that further restrict this interval valued result will be discussed.
Chapter 6 will collect the ideas of Chapter 4 and Chapter 5 by comparing the
multinomial logit based approach under epistemic and ontologic uncertainty,
where the importance of the distinction between these two types of uncertainty
will be emphasized.
Finally, in Chapter 7 the main results will be summarized and some open ques-
tions will be focused that could not be investigated in the framework of this
thesis.
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2. Approaches for dealing with
coarse categorical data under
epistemic uncertainty

After differences between epistemic and ontologic uncertainty have been worked
out in Chapter 1, the importance of distinguishing between those concepts in
the development of appropriate approaches should be obvious. Therefore, the
already existing approaches dealing with data under epistemic uncertainty will
be the main focus in this chapter, while the case of ontologic uncertainty will
be covered in Chapter 3.
It is reasonable to show the basic formal situation of working with data under
epistemic uncertainty first, which can be regarded as the starting point for
several approaches that will be presented in this chapter. Moreover I want to
show the notation, which is used here and is partly adopted from Heitjan and
Rubin [1991], in this context.
The essential problem of the presence of epistemic uncertainty as already de-
scribed in Chapter 1 consists of the fact that the true values of the character-
istic of interest, denoted here by random variable Y , can not be observed in
an exact way, but only in a coarsened form instead, denoted here by random
variable Y , written in a calligraphic way. At a first glance the labeling seems
to be somewhat unusual (typically X and Y are devoted respectively), but in
respect of asuming only the dependent variable being coarsened in this thesis,
this decision can make sense indeed.
Furthermore the characteristic of interest Y is categorical as this thesis will
concentrate on this case. Its true, but potentially unobserved, values lie in the
sample space Ω with the result that Y is able to take values in the power set
of Ω, containing 2Ω elements. To keep things simple the sample space of Y can
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2. Epistemic uncertainty

be reduced by regarding only those sets in the power set to which a positive
probability is assigned. For instance, if the true values of a characteristic take
the values “A”, “B” or “C”, the power set contains 23 sets, namely “A”, “B”,
“C”, “A XOR B”, “A XOR C”, “B XOR C”, “A, B XOR C” and the empty set.
Because of the mentioned restriction only the possible sets of the underlying
situation are included in the sample space of the observed quantity Y .
Having this notation in mind, the following basic equation (2.1) can be ex-
plained which can be derived by the “Theorem of total probability”:

P (Y = y) =
∑
y

P (Y = y|Y = y) · P (Y = y). (2.1)

As the emphasis of this thesis will be on the categorical case as well as for
reasons of simplicity, it has been decided to show this equation for the discrete
case. Nevertheless, in Section 2.1 this equation will be extended for general
data.
The probability P (Y = y) of the true but potentially unobserved variable is
the quantity of interest. If the nature of the coarsening, which is expressed
by P (Y = y|Y = y), was known, this probability directly could be calculated,
because the probability of the observed variable P (Y = y) is known or at
least can be estimated. Nevertheless in most situations the coarsening process
is unknown and therefore one can have big problems to derive the requested
quantity P (Y = y).
The approaches which I will describe in this chapter focus on this problem and
try to find solutions in different ways. Because of the fact that the problem
will be solved if the coarsening process is known, these approaches focus on the
quantity which describes the coarsening, namely P (Y = y|Y = y). Moreover
probability P (Y = y|Y = y) will be important in this chapter, because it is
able to express the underlying epistemic nature of uncertainty by emphasizing
that there is a true value of the characteristic which will be coarsened in a
second step. Hereafter this probability P (Y = y|Y = y) is sometimes denoted
by q(y|y).
As already mentioned in Chapter 1 for illustration the case of observing cat-
egories “A”, “B” and “A XOR B” will be considered at many points of this
thesis. In this connection coarsening mechanisms P (Y = (A XOR B)|Y = A)
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2.1. Ignorability of coarsening

and P (Y = (A XOR B)|Y = B) will be denoted by q1 and q2 respectively. In
case of q1 and q2 being equal, which will form a case of special interest, the
notation of q1 = q2 = q will be applied.
While ignorability constitutes rather a property than a real approach for deal-
ing with this initial problem (see Section 2.1), sensitivity analysis and partial
identification can be regarded as two attempts which both try to solve the
mentioned problem by getting an idea about P (Y = y|Y = y), but by pro-
ceeding from a different angle (see Section 2.2 and 2.3). Therefore, it will be
worth to contrast these two approaches (see Section 2.4).
Although these approaches can be applied in the general case, this thesis
mainly will concentrate on the presence of categorical data. But because of the
fact that the concept of ignorability has been considered for the general case
by Heitjan and Rubin [1991], I will summarize their findings in a general way
first, before illustrations by several examples will concern the categorical case.
Partial identification and sensitivity analysis based approaches have primarily
been developed in the context of the missing data problem. Thus, after sum-
marizing the already existing background in conjunction with missing data,
the objective will consist of applying these definitions in the framework of
coarsened data. For reasons of simplicity I will focus on the categorical case in
the course of this. Moreover it could be interesting to establish a connection to
related areas like the problem of missing (see Subsection 2.1.6) or misclassified
data (see Subsection 2.2.4) in this chapter.

2.1. Ignorability of coarsening

Concerning this initial problem, the easiest way to start consists of thinking
about situations in which the coarsening can be ignored. There is a concept
called “coarsened at random” which can be regarded as a property that simpli-
fies a lot. In this section I will explain and illustrate this fundamental concept.
Moreover it is interesting to describe some already existing extensions of this
concept as well as to investigate its relation to the concept of “missing at ran-
dom”.
In order to structure this procedure I decided to divide this section into several
subsections, namely 2.1.1 Basic Situation, 2.1.2 Likelihood under nonstochas-
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2. Epistemic uncertainty

tic coarsening, 2.1.3 Likelihood under stochastic coarsening, 2.1.4 The concept
of “coarsened at random”, 2.1.5 Further extensions of the concept of “coars-
ened at random” and 2.1.6 Relation to the missing data problem.
The following introduction to the concept of “coarsening at random” (CAR)
(Subsection 2.1.1 to 2.1.4) is strictly guided by Heitjan and Rubin [1991] and
equations are adapted from there. Nevertheless here the problem is motivated
in a different way and there are some own explanations and illustrations. As
distinguishing between nonstochastic and stochastic coarsening and their con-
sequences in my opinion is a central aspect for the contentual understanding of
CAR and the underlying equations, I have decided to work out these forms of
coarsening in a detailed way and emphasized their different role in the devel-
opment of the likelihood. Moreover a notation is applied, which differs slightly
from the one used by them, in order to refer to the problem described above.

2.1.1. Basic Situation

Extending equation (2.1) to its general continious form, one yields the following
likelihood (similar to equation (2.12) of Heitjan and Rubin [1991])

L(θ, γ, y) =
∫
y

q(y|y, γ) f(y, θ)dy, (2.2)

where both components q(y|y, γ) and f(y, θ) are analogues to P (Y = y|Y = y)
and P (Y = y) from equation (2.1), respectively. Therefore, component f(y, θ)
denotes the distribution of the true value of the characteristic which is poten-
tially unobserved, where θ is the parameter of interest, and q(y|y, γ) denotes
the conditional distribution of the observed value given the true value, where
γ is the parameter of coarsening which will be described in more detail in
Subsection 2.1.3. The generality of equation (2.2) results from the flexibility
in using different dominating measures, like the counting measure for the dis-
crete case obtaining equation (2.1) from above, the lebesgue measure for the
continous case, or a mixture of the lebesgue and the dirac measure for cases
with continous parts and jump discontinuities.
This likelihood I want to regard as the general likelihood here and use it as
a starting point for deriving the simplified grouped Likelihood LG in Subsec-
tion 2.1.2 and the correct Likelihood LC in Subsection 2.1.3. These forms of
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2.1. Ignorability of coarsening

likelihoods basically correspond to this general likelihood, but the underlying
difference is resulting by the different coarsening mechanisms q(y|y, γ) that can
be used in the different situations of Subsection 2.1.2 and Subsection 2.1.3. In
Subsection 2.1.2 I will address the situation that a nonstochastic coarsening
mechanism is underlying, which will lead to a simplified q(y|y, γ), while in
Subsection 2.1.3 the precence of stochastic coarsening will be viewed.
In order to understand why the form of q(y|y, γ) in Subsection 2.1.2 is easier
compared to q(y|y, γ) of Subsection 2.1.3, it might be useful to realize the dif-
fernece between a nonstochastic and a stochastic coarsening mechanism.
If one is faced with a nonstochastic coarsening mechanism this means that
the underlying degree of coarsening is predetermined and known. This I want
to illustrate by the following example: One is concerned with a questionnaire
which focuses the question “How many hours do you watch TV per week?”.
If only answers in intervals are available, like “I don’t watch TV at all”, “1-5
hours”, “5-10 hours”, “10-20 hours” and “more than 20 hours” and it is as-
sumed that all respondents answer in a correct way, then the coarsening is
predefined in the sense that there is a unique coarsened form for every true
answer. So if there is a respondent who answers that he watches TV four hours
per day, it is obvious that “1-5 hours” will be the observed answer. So one does
not have to reflect on which mapping Y−→Y to choose, because it is known.
Other examples for nonstochastic coarsening mechanisms are censored data if
fixed and known censoring times are used or rounded data if one uses a fixed
rounding rule (Heitjan 1993).
Otherwise in the case of a stochastic coarsening mechanism one does not know
before which degree of coarsening will be needed and the decision for a special
degree is rather at random. To give an example again one could imagine a
situation with heaped data. An example which is often used in the context
of heaped data is the answer to the question “How many cigarettes do you
smoke per day?” (Heitjan 1994). There might be people who state their exact
number of cigarettes but others who report their number in complete packs.
In this case it is more difficult to decide which degree of coarsening is present
and therefore which mapping Y−→Y to choose, because it is neither known
nor predetermined. Please note that even if this kind of coarsening is called
“stochastic”, the choice for a special degree of coarsening does not have to be
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2. Epistemic uncertainty

at random, as there could be other factors which can influence the decision
for a particular level of coarsening. For instance, it could be plausible that
respondents who smoke large amounts of cigarettes per day rather report their
answer in packages or that old people want to state their answer more exactly
and thus report the real number of cigarettes. Therefore, it could be possible
that the level of coarsening depends either from the variable of interest itself
or from other variables. For this, the term “stochastic” coarsening in a certain
manner can be misleading.
For understanding the difference between the grouped likelihood LG (see Sub-
section 2.1.2) as well as the correct likelihood LC (see Subsection 2.1.3) and
the fact that there results a different q(y|y, γ) (see Equation 2.2) for both forms
of likelihoods, it is important to keep these types of coarsenings in mind.

2.1.2. Likelihood under nonstochastic coarsening

If one is concerned with a nonstochastic coarsening mechanism, things can be
simplified, because the conditional probability q(y|y, γ) does not depend on
the level of coarsening and thus is independent from the parameter γ. Hence,
it can be expressed in the following way (basically adopted from equation (2.1)
of Heitjan and Rubin [1991]):

q(y|y, γ) = r(y|y, θ) =

 1, if y = Y(y)
0, if y 6= Y(y).

(2.3)

Therefore, in the case of grouping the conditional distribution which describes
the coarsening process is only determined by the fact that the observed ran-
dom variable Y has to be a function of the true variable Y , i.e. Y=Y(Y).
This means that y has to be interpreted as the subspace of Ω in which the
true value of Y lies. Because of the fact that the degree of coarsening is pre-
determined, one does not have to think about which degree of coarsening is
chosen and how the coarsening can be modelled as it has to be done in the
presence of stochastic coarsening (see Subsection 2.1.3). That forms the es-
sential difference between nonstochastic and stochastic coarsening concerning
the development of the likelihood functions.
If one inserts q(y|y, γ) of equation (2.3) into equation (2.2), the grouped likeli-
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2.1. Ignorability of coarsening

hood LG will result which can be used if a nonstochastic coarsening is under-
lying. Although this grouped likelihood LG is quite desirable, things could be
further facilitated by evaluating this Likelihood at the center of the grouping
classes and yielding the approximated Likelihood LA. As this procedure does
not incorporate that these centers are not equal to the observed values, one
can not assume generally that LG and LA are proportional to each other and
therefore inferences concerning to LA can be incorrect.

2.1.3. Likelihood under stochastic coarsening

Until now I have regarded the case of nonstochastic coarsening only. But
additionaly it is important to focus on cases whose underlying coarsening
mechanism is stochastic and the degree of coarseness is not predetermined.
Therefore, the following notation is introduced which is mainly adopted from
Heitjan and Rubin [1991].
For the general case of stochastic coarsening the precision of reporting has to
be included to specify the prescription of the coarsening, which is a-priori un-
defined for stochastic coarsening by definition. This is done by establishing the
precision of reporting as a new random variable G with sample space Γ, whose
value g affects the coarsening in that way that it decides which of the mappings
Y−→Y should be applied for determining the coarsening process. Because of
introducing random variable G, random variable Y can be expressed now as a
function not only of Y , but also as a function of G. Therefore, r from equa-
tion (2.3), which determines how the true variable of interest Y turns into Y ,
changes to (see equation (2.8) from Heitjan and Rubin [1991])

r(y|y, g, θ, γ) =

 1, if y = Y(y, g)
0, if y 6= Y(y, g).

(2.4)

So value y will be observed if on the one hand the true value lies in y and on
the other hand it is determined by a corresponding g, i.e. y = Y(y, g).
But there is a kind of problem, because even though the observed value y
can give an idea about the underlying value of G, the precision of reporting
cannot be observable in general. Due to this, densitiy h(g|y, γ) that models the
precision of reporting has to be involved, where γ describes the corresponding
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2. Epistemic uncertainty

parameter. Thus, the resulting q(y|y, γ) can be calculated by the following
equation (in the main equation (2.9) of Heitjan and Rubin [1991]):

q(y|y, γ) =
∫

Γ
r(y|y, g) h(g|y, γ)dg. (2.5)

If one inserts q(y|y, γ) of equation (2.5) into equation (2.2) the correct likeli-
hood for the general case of stochastic coarsening results, which will be denoted
by LC . This likelihood LC is preferable, because it incorporates not only the
coarsening of Y (by term r), but is also able to handle types of coarsening
whose degree of coarsening is stochastic (by extended term r and term h).
Nevertheless, it is obvious that the calculation of this correct likelihood LC

is much more complex than the one of the grouped likelihood LG in which
q(y|y, γ) reduces to r (see Equation (2.3)). This fact forms the motivation for
the development of the property “coarsened at random”.

2.1.4. The concept of “coarsened at random”

Even if LG might be desirable because of its easier calculation, it can some-
times be incorrect, because it does not account for the stochastic nature of
the coarsening process. Therefore, focusing on the following question could be
interesting:

Question: Under which properties is it possible to use the grouped like-
lihood instead of the correct likelihood, i.e. in which cases is LG ∝ LC?

Parameter distinctness forms an important property in this context. This pro-
perty is well known from the “missing at random” assumption in the missing
data context and means here that the parameter γ which governs the coars-
ening mechanism and the parameter θ of the true distribution of the variable
of interest belong to disjoint parameter spaces (Rubin 1976). “Coarsened at
random” forms a second property in this framework, formulated by Heitjan
and Rubin [1991, p. 2248] (adjusted notation):

“The data y are coarsened at random (CAR) if, for the fixed observed
value of y and for each value of γ, q(y|y, γ) takes the same value for all
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2.1. Ignorability of coarsening

y ∈ y, that is, for all values of y that are consistent with the observed
coarse data y.”

Simplified and in own words this means that under CAR probability q(y|y, γ)
which determines the coarsening process is the same no matter which true
value y is underlying. This has to be fulfilled for each coarsening mechanism
that could be imaginable.
Imagine for illustration the problem that the answers to an item in a ques-
tionnaire (“a”, “b”, “c” or “d”) cannot be observed exactly, but only in a
coarsened variant instead. That could be useful if the respondents’ anonymity
is wished to be preserved. In this case “coarsened at random” means for
example that for the fixed observed value “c or d” and for each feasable γ,
probability q((c XOR d)|y, γ) takes the same value for all true values that
correspond with the observed data, namely true value “y = c” and “y = d”.
Thus the probability that determines the coarsening mechanism is constant
(q(Y = y|Y = y)=const) no matter which true value y is underlying as long as
it fits to the observed value y.
From this little example one can notice directly that CAR entails quite much
information about the coarsening process. Therefore, one has to pay attention
if in the regarded situation parameter distinction and CAR are actually valid,
because Heitjan and Rubin [1991, p. 2249] have shown that using LG can be
misleading if these properties are not satisfied.
Although Heitjan and Rubin [1991] state their conclusion in a more detailed
way (equal likelihood ratio and posterior distribution of LG and LC), the fol-
lowing answer to the question above should be sufficient here:

Answer: If data are CAR and parameter distinctness of θ and γ is
satisfied then LG and LC are proportional to each other and it is permitted
to calculate LG instead of LC.

A coarsening process for which CAR as well as parameter distinctness are valid
can be called “ignorable” (notation transfered from missing data problem, e.g.
Little and Rubin 2002). Because the observed variable does not depend on
the true value as long as it corresponds to the observed value, the likelihood
does not depend on the true, but potentially unobserved, values and therefore
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inferences that ignore the coarsening process can be made. This explaines the
intuition of calling such a process “ignorable”.
To get an overview of some examples and applications concerning the con-
cept of CAR, Heitjan [1993] might be helpful. For instance, different types of
coarsening are regarded in this context and it is shown that rounding, type I
censoring (see Kalbfleisch and Prentice [2011, p. 41]), which is present if the
censoring times are fixed, and type II censoring (see Kalbfleisch and Prentice
[2011, p. 41]), which investigates censoring after the fixed d-th failure, are al-
ways CAR. Moreover the problem of “Competing Risks” is handeled there,
which is of interest if there are other reasons than the treated one, that lead to
censored failure times. Therefore, it could sometimes be suggestive to face the
question “time until death” instead of “time until death from a special illnesss
which is of interest”.
To get a clearer understanding of the nature of CAR, it might be useful to
focus on some depictions of CAR that Gill et al. [1997, p. 8] show for the
discrete case, namely CAR(Y|Y ), CAR(Y |Y) and FACTOR(Y). CAR(Y|Y )
and CAR(Y |Y) are closely linked to each other as they differ by a weight-
ing factor only as will be shown more detailed in Equation 2.18. CAR(Y|Y )
equals the definition which has already been given on page 14 and one advan-
tage of this kind of representation is that the two stage procedure is expressed
in the sense that first the random variable of interest Y is generated and
after that it is observed in a coarsened form Y by a distinct process. The
chronology of considering CAR(Y |Y) is different as the assumption is made
for given observed data. If for instance one has observed Y = “(a XOR b)”,
under this CAR presentation “coarsening at random” only implies that the
true value is an element of “a XOR b”, so it is either “a” or “b” (Gill et al.
1997, p. 6), which represents an obvious fact. The third CAR display con-
cernes the factorization of the marginal distribution of Y for the discrete case
(P (Y = A) = P (Y ∈ A) P (Y = A|Y ∈ A)) (Gill et al. 1997, p. 6). Gill et al.
[1997, p. 7-8] have shown that given the observed data one can create the
variable of interest Y , such that the observed variable represents a coarsening
of Y and CAR holds. Moreover the corresponding factorization is unique. For
that reason Gill et al. [1997] conclude their statement “CAR is everything”.
In my opinion one has to treat this statement with caution, because it only
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means that for every observed data there is a way to construct a variable of
interest such that CAR is satisfied , but it does not express that CAR proba-
bilities are justified in every case and thus interpreting this statement as “Ev-
erything is CAR” could be misleading. Therefore, I summarize the property
of CAR as an assumption that may simplify the corresponding likelihood (see
page 15), but whose plausibility has to be checked first. Two methods that are
able to embed CAR without relying on this assumption only, namely partial
identification and sensitivity analysis, will be presented in Subsection 2.2 and
2.3.
After having described the general concept of “coarsened at random”, I will
explain some already developed further extensions from this basic concept.

2.1.5. Further extensions of the concept of “coarsened at
random”

Heitjan [1994] has developed an interesting extension to the already described
basic concept of “coarsened at random” by introducing a new random variable
as well as the concept of “coarsened completely at random” (CCAR).
As the degree of coarseness, namely G, cannot always be observable in a pre-
cise way, he establishes an extra random variable H which is able to give some
information about G. In Subsection 2.1.3 density h(g|y, γ) has been used to
model the coarsening in case of value g being unknown, such that denoting
this random variable as H is appropriate. In this way, Heitjan [1994] faces a
situation in which the true, but potentially unobserved, variables of interest
are Y and G, while variables Y and H are observed.
Instead of giving some formal definitions, I decided to illustrate the concept
of “coarsening completely at random” and the application of this new random
variable H by an example such that these new definitions become compre-
hensable. This example is similar to the running example of Heitjan and
Basu [1996]. To understand the difference between situations under CAR and
CCAR and needing and not needing a random variable H respectively, I will
distinguish four cases within this example. If one is interested in the formal
background, it might be helpful to read through Heitjan [1994], where the
property of “coarsened completely at random” is shown in a frequentist frame-
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work and the one of “coarsened at random” in a Bayes framework. Thus the
difference between CAR and CCAR can be motivated by the distinction be-
tween these two modes (Heitjan and Basu 1996, p. 208).

Example 1 I will focus on the question “How many bottles of a
special beverage did you consume during the last month?”. Then
data could be heaped (see Chapter 1) and there might be respon-
dents who will answer in bottles (G = 0), while others report their
answer in terms of beverage crates (G = 1), probably those who
drink this beverage very often. Assuming that there are eight bot-
tles in one of those crates, coarsening function

Y =

 {Yi}, if Gi = 0
{8bYi8 c, ..., 8b

Yi
8 c+ 7}, if Gi = 1

could result, where b c represents the floor function.

1.) First of all, I regard the case of CAR under the assumption that G can be
fully observed for every respondent, this means that H = {G}. This assump-
tion accounts for further simplification of the CAR property in the sense that
instead of q(y|y, γ) from equation (2.5) only h has to be the same for a given
observed value of Y no matter which true value of Y that corresponds with
the observed data (i.e. y ∈ y) is underlying. That statement equals Corrollary
1 of Heitjan and Rubin [1991, p. 2249]. In the following I try to explain this
finding rather in a contentual than a formal way.
The reason for this simplification consists of the fact that under the assumption
that the value of G is known and fixed, the task of r is no longer to determine
the right degree of coarsening, but only to conduct the grouping. Being no
longer a function of g, one can exclude r from the integral in equation (2.5) by

q(y|y, γ) =
∫

Γ
r(y|y, g) h(g|y, γ)dg = r(y|y)

∫
Γ
h(g|y, γ)dg

and therefore only h has to be included into the definition of CAR.
Illustrated by means of this example the property of CAR can be expressed in
the following way: If every respondent reports his answer in terms of bottles
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(g = 0), CAR is satisfied by default, being only one element in the corre-
sponding reported set (see coarsening function). Otherwise, namely in the
case that there are some respondents who answer in terms of crates (g = 1),
one has to check if h(1|y, γ), i.e. the conditional probability of reporting
crates, is the same no matter which true value y that is consistent with
the observed data is underlying. For instance, if a crate reporter (known
g = 1) consumed 16 bottles, a reported set of y={16, 17, ..., 23} would re-
sult (see coarsening function) and therefore it would have to be satisfied that
h(1|16, γ)=h(1|17, γ)=...=h(1|23, γ) for all γ.
2.) Secondly, I focus on a situation of CAR again, but now the value of G is
unknown, i.e. at a first glance one does not have any evidence whether the
respondents originally reported their answer in bottles or in crates. But if
an answer of a respondent was y = 28, it would be obvious that this answer
is in terms of bottles (because 28 is not divisible by eight), while an answer
of y = 16 (divisible by eight) wouldn’t give some information on the form of
reporting (bottles or crates) and therefore w = {0, 1}.
CAR is valid if for every respondent who belongs to the latter case (w = {0, 1}),
for all γ, probability h(1|y, γ) is equal to 1

2 for all true values y that are not
divisible by eight and are consistent with the observed data (Heitjan 1994,
p. 705), e.g. h(1|17, γ) = ... = h(1|23, γ) = 1

2 if one faces the reported set from
above. The additional condition in the sense that the value of these conditional
densities not only have to be equal, but also have to be 1

2 results from the fact
that compared to case one the value of g is unknown and therefore one has
to decide which degree of coarsening is underlying. As in this example only
two levels of coarsenings are possible, namely reporting the number in terms
of bottels (w = 0) or in terms of crates (w = 1), assigning both levels the
same probability given a special possible true value (e.g. h(1|17) = h(0|17)),
leads to probability 1

2 . This additional condition forms the difference between
G being fully observed (case 1) and G being unobserved (case 2).
It could be a little bit surprising that even if G is not directly observed a con-
dition on h, and not on q(y|y, γ) like described in the previous subsection, is
imposed. The reason for this consists of the fact that r, which usually governs
the choice of the underlying degree of coarseness, is not needed here. This can
be said, because in this situation either the underlying degree of coarseness is
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known (for values not divisible by eight) or one is concerned with this addi-
tional assumption (for values not divisible by eight) which forms a fixed rule
for the determination of the degree of coarseness.
3.) Thirdly, the case of CCAR with G is fully observed will be addressed.
For showing the assumption of “coarsend completely at random” the condi-
tional density h(1|y, γ) not only has to be the same for all possible true values
that correspond with the reported set (see case 1), but all possible true values
y ∈ {0, 1, 2...} (Heitjan 1994, p. 703). In respect of this example “coarsened
completely at random” means that the conditional density for respondents
who report their answer in terms of crates is the same no matter which true
value is underlying, i.e. h(1|y, γ) has to take the same value for each γ and
for all y ∈ {0, 1, 2...}. As in case 1 assumptions do not have to be imposed
on probability h(0|y, γ), because CCAR is satisfied by default if respondents
answer in bottles. The assumption of CCAR is stronger compared to CAR,
because this assumption is not only based on the true values of the reported
set, but all possible true values. At this point one can note a parallel to the
“missing data problem”, because the assumption of “missing completely at
random” imposes conditions on both the observed and unobserved values as
well. More considerations concerning the relation to the missing data problem
can be found in Subsection 2.2.6, 2.3.4 and 2.1.6.
4.) Fourthly, the case of CCAR with unknown value of G is left. Heitjan [1994,
p. 705] realized that two conditions have to be fulfilled in this case. Illustrated
by the example CCAR is valid if: a) For all respondents that report a number
which is not divisible by eight and thus w = {0}, the conditional density of
reporting in terms of bottles, namely h(0|y, γ), has to be the same for all γ and
all true values y not divisible by eight, b) For all all respondents that report
a number which is divisible by eight and thus w = {0, 1}, the conditional
density of reporting in terms of bottles has to be one half, i.e. h(0|y, γ)=1

2

for all γ and all y not divisible by eight (Heitjan 1994, p. 705). In case b) a
stronger condition results because one does not know which degree of coars-
ening is underlying (see case 3).
To give a summary of the regarded cases, Figure 2.1 can be helpful. By compar-
ing first and second row of this Figure, one can notice that the basic difference
between CAR and CCAR consists of the fact that within the CAR assump-
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Example 1: 

Distinguishing four cases:

1. CAR, G observed

2. CCAR, G observed

3. CAR, G not observed

4. CCAR, G not observed

takes the same value

Recorded

answer: 

28

16

same probability of reporting in crates no matter 
which y of reported set is underlying

takes the same value

same probability of reporting in crates no matter 
which y is underlying

28

16

Level can be inferred, exact reporting, CAR 
satisfied by default

probability of reporting in crates is 1/2 no matter 
which y not divisible by 8 of reported set is
underlying

probability of reporting in crates is 1/2 no matter 
which y not divisible by 8 is underlying

28
same probability of reporting in bottles no matter 
which y not divisible by 8 is underlying

16

Figure 2.1.: Illustrating the four cases that have been distinguished in Example 1:
1. CAR + G observed, 2. CAR + G unobserved, 3. CCAR + G observed, 4. CCAR
+ G unobserved.

tion it is required that the underlying true values y of h(1|y, γ) come from the
reported set, where there is no such postulation in the context of the CCAR
assumption. Moreover, by contrasting left and right column one can recognise
that if G cannot be observed, it has to be distinguished between two cases,
namely whether the reported answer is divisible by eight or not. While in the
framework of CAR the level of coarseness could be inferred for answers that
are not divisible by eight, simplifications of that kind were not possible in the
case of CCAR. Moreover, if G cannot be observed an additional assumption
has to be imposed in the sense that the corresponding probabilities h not only
have to be equal, but also have to be one half.
The concept of “coarsened completely at random” will be addressed in Subsec-
tion 2.1.6 again, in order to give some indication of the relation to the missing
data problem.
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The extension by Heitjan [1994] is not the only one that has been made.
For instance, Jaeger [2005] distinguished two forms of CAR in the categorical
case, namely weakly coarsened at random (w-car) and strongly coarsened at
random (s-car). During s-car definition focuses on the conditional distribution
of the coarse data, w-car is based on the joint distribution of complete and
coarsened data. By differentiating between these two forms, he can partly
make propositions concerning ignorability without the assumption of distinct
parameters. He worked out that s-car can serve as the only assumption for
obtaining ignorability, whereas in case of w-car in general further assumptions,
like an underlying saturated model, are necessary.
After having a clearer understanding about the concept of “coarsened at ran-
dom” and some possible extensions, it could be interesting to analyse their
difference as well as their similarity to the missing data problem.

2.1.6. Relation to the missing data problem

For working out the relation to the missing data problem, I want to use the
following example.

Example 2 Imagine that the members of a workshop are ex-
pected to evaluate this workshop by a scale from 1 to 5, with one
being the worst rating and five being the best one.
Case 1: Only a few of those ratings can be observed exactly. Oth-
erwise it is only observed whether positive feedback (e.g. 4 or 5)
has been given, or not (e.g. 1, 2 or 3 respectively).
Case 2: Some respondents didn’t give an answer to this question
at all and therefore some observations are missing.

First, I want to demonstrate the differences and the similarity of the nature of
a coarsening and a missing mechanism by means of Example 2.
An obvious difference between case one and case two and therefore between
the coarsened data and the missing data problem consists of the fact that in
case one more information is available. In the situation of coarsened data the
observer knows for some cases only that the true value lies in a special set (e.g.
“4 or 5” in case of a positive statement), which is an element of the power
set. By contrast in the situation of missing data one has even less information,
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because the observer does not know anything about the missing observations
and every element of the sample space Ω could be possible (e.g. “1,2,3,4 or 5”).
Because Ω (example: set “1,2,3,4,5”) is also an element of the power set P(Ω),
the missing data problem can be regarded as a special case of the coarsened
data problem with Gi=1 if there is given maximal precision of coarsening and
thus data are fully observed and Gi=0 if there is given minimal precision of
coarsening and thus data are missing. Thus in the special case of missing data
the coarsening function can be described as

Y =

 {ω}, if G = 1
Ω, if G = 0

, (2.6)

where ω is a single element of Ω.
Furthermore in Subsection 2.1.5 an example has shown that the degree of
coarseness G sometimes cannot be observed in the framework of coarsened
data and therefore a random variable H has been introduced. As in the con-
text of missing data it is clearly evident whether data are missing (G = 0)
or precisely observed (G = 1), an introduction of random variable H is not
necessary, because G is always observed.
Moreover I want to illustrate the equivalence of the problem specific underlying
properties. Therefore, it might be useful to recall different types of missing-
ness first and then refer those definitions to the properties in the context of
coarsened data in a second step. Little and Rubin [2002] distinguish between
three types of missingness, nameley “missing completely at random” (MCAR),
“missing at random” (MAR) and “not missing at random” (NMAR).
The missing data mechanism is called MCAR if the missingness neither de-
pends on the missing nor on the observed data. So data are not MCAR in the
described example either if the missingness of a feedback is influenced by the
rating itself (i.e. in the sense that respondents who didn’t like the workshop,
do not give a feedback at all) or if the missingness of a feedback is affected
by other answers (like age) which have been reported (i.e. in the sense that
younger respondents rather do not give a feedback). In a second step one can
try to apply this definition in the context of coarsened data by remembering
that missing data can be viewed as coarsened data with Gi = 1 if the data are
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observed and Gi = 0 if the data are unobserved (and therefore G equals the
missing data indicator of Little and Rubin [2002] (but expressed in the oppo-
site way here)) and G is fully observed. Under CCAR, h(g|y, γ) has to take the
same value for all y ∈ Ω, i.e. that the probability that a special coarsening is
underlying (and refered to this case: probability of missingness) must be equal
no matter which values within the sample space are underlying. This means
that under CCAR missingness (e.g. of a feedback) must not depend on the
observed data nor on the missing data (both because y is an element of the full
sample space). Therefore, one can conclude that the MCAR can be viewed as
a special case of CCAR.
Data are called MAR, if the missingness depends on the observed data only.
For instance, under MAR the probability that a feedback of a particular re-
spondent is missing must not depend on the feedback itself, but may depend
on another reported variable like age in the sense that younger respondents
rather do not give a feedback. When younger people may give in general
worse feedback, because the target audience of this workshop was planned to
be older, this could be problematic. Again it is possible to apply this situation
in the framework of coarsened data. Under CAR, h(g|y, γ) has to be the same
no matter which y ∈ y is underlying, where y is the observed data. Therefore,
the coarsening is only allowed to be dependent on the observed data, where
this means in the example that under CAR, the missing depends on the ob-
served values only. Thus, MAR represents a special case of CAR.
Until now, only two definitions have been recalled in the context of coarsened
data, namely CCAR and CAR, but in the missing data context NMAR forms
a third one. Under NMAR, the missingness depends on the missing as well
as the observed values. In practice this can lead to big problems, because if
one imagines that, for instance, worse feedbacks are missing more probable,
a serious bias can result. Taking NMAR as a starting point, I use explicitly
the term “not coarsening at random” (NCAR) for the case that assumptions
CCAR and CAR are not satisfied, but the coarsening process is known and
can be modelled. This kind of NCAR-definition would be valid, if for instance
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h, that models the coarsening, is described like in equation (2.10) of Heitjan
and Rubin [1991, p. 2247] (adjusted notation)

h(g, y, α) =
n∏
i=1
{Φ[α1 − α2y]}1−gi{1− Φ[α1 − α2y]}gi ,

where α denotes an additional parameter and Φ is the standard normal inte-
gral. Thus the level of coarsening is dependent on the true value itself (as long
as y 6= 0). Illustrated by the example this could mean that respondents who
are not satisfied by the workshop rather gave their feedback in a coarsened
form like “1 or 2” or “bad feedback”, while the others rather reported their
feedback exactly.
So even if assumptions like CAR or CCAR are not valid, it could be possible
that the coarsening is known and can be modelled. Even if most methods in
the framework of censored data are based on censoring that is uninformative
(Lagakos 1979, p. 152), there exist a few approaches that are able to adjust for
dependent censoring. Dependent censoring is present if the reasons of censor-
ing affect the resulting survival time. For istance, one could be concerned with
dependent censoring if reasons that are connected with the therapy are respon-
sible for the removement of some patients from the study or if the problem of
competing risk is present, i.e. if failure times are recorded that are not induced
by the reason of interest (e.g. death of a patient because of other reasons). A
substantial bias can result if methods that deal with uninformative censoring
are used in these kinds of situations. This emphasizes the necessity of methods
that are able to deal with informative censoring. For instance, it is achievable
to deal with dependent right-censored data in the presence of many covariables
by condensing the information that can be revealed by those covariables and
using two models, namely one for the lifetime given covariates and one for the
censoring time given covariates. Further information concerning the estima-
tion of the marginal survival function of the failure time of interest and some
resulting robust properties can be found in Zeng [2004]. In case of competing
risk one could apply the approach proposed by Moeschberger and David [1971]
instead, who extended the independent censoring model

U = min(T, Y ) and d = 1 if T ≤ Y or d = 0 if T > Y,
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with T being the true survival time and d an indicator whether actual survival
time has been observed (d = 1) or a censored one (d = 0), by focusing on the
bivariate distribution for (T ,Y ) and regarding independence of T and Y as a
special case. He showed how maximum likelihood estimators for the parame-
ters of the joint distribution can be derived that are able to adjust for general
censoring (Lagakos 1979).

All in all the concept of missing can be seen as a special case of coarsening.
This I have illustrated by investigating the general nature as well as different
types of mechanisms in the context of coarsened and missing data, which is
depicted in Figure 2.2. The aspect of the general nature is showed in the box
below, where coarsening can be regarded as a mapping from the sample space
into the power set while missing represents a mapping from the sample space
either into a singelton (namely {ω}, where ω is an element of Ω) in case of
complete observation or into the full power set and thus the sample space in
case of missing observations. The green ellipse shows that for each type of
missing, an underlying general form of coarsening exists, for instance MCAR
is a special type of CCAR.
Because of the fact that the missing data problem has been investigated quite
well, it could be reasonable to refer some of those methods which are used in
the area of missing data to the problem of coarsened data. More considerations
concerning this can be found in Subsection 4.6

To sum up this section, I can say that ignorability, which is satisfied if CCAR
or both CAR and distinct parameters are applicable, is a quite helpful assump-
tion, because under this property a simplified likelihood results. Nevertheless,
one could be concerned with a situation in which CCAR and CAR are not
valid, but the underlying coarsening mechanism could be known such that
one is able to model it. This has been indicated in the context of dependent
censoring. Thus by additional assumptions (CAR or CCAR) or modelling the
coarsening mechanism, a solution to the initial problem described in the be-
ginning of this chapter (see equation (2.1)) can be concluded. But there are
a lot of situations in which the coarsening is unknown and wrongly imposing
assumptions as CCAR or CAR as well as characterizing the coarsening process
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Missing data as a special case of coarsened data

Coarsened data

CCAR

Missing data

CAR

MCAR

MAR

NMARNCAR

{ω}

Ƥ

Ω

Ω (Ω)

Ω

Figure 2.2.: Illustrating missing data as a special case of coarsened data.

in a wrong way can lead to substantial error. Therefore, one has to take care
if other methods have to be applied instead which do not rely on these strong
assumptions.
With this in view partial identification seems to be a quite preferable approach
that starts without any assumption and continues by increasing those gradu-
ally. Hence, I want to focus on this approach next by discussing the importance
of assumptions within the frame of statistical analysis first.

27



2. Epistemic uncertainty

2.2. Partial identification
“The credibility of inference decreases with the strength of the assumptions
maintained“ – Charles Manski (2003) –

This statement is called “law of decreasing credibility” and expresses a fre-
quently ignored problem that in my opinion is worth to assign high relevance.
In order to understand why in practice it is rarely taken note of this therein
addressed issue, it could be reasonable to recall the concept of identifiability
first as defined for example in Casella and Berger [1990, p. 511]:

Definition 1. A parameter θ for a family of distributions {f(x|θ) : θ ∈ Θ} is
identifiable if distinct values of θ correspond to distinct probability distribution
functions (pdfs) or probability mass functions (pmfs). That is, if θ 6= θ′, then
f(x|θ) is not the same function of x as f(x|θ′).

This means that statistical models are identified whether different values of
parameters θ produce different pdfs or pmfs of the observed variables. Other-
wise one is concerned with difficulties in doing inferences. One can distinguish
between a “just identified” model and two different types of non-identifiable
models, namely “overidentified” and “underidentified” models. A model is
said to be overidentified if the number of known parameters (nk) exceeds the
number of parameters that have to be estimated (ne). Thus, these kinds of
models exhibit a positive degree of freedom (nk−ne > 0) and are characterized
by systems of equations that can not be solved in an analytic way (Fahrmeir
et al. 1996, p. 742). For a better understanding of the mentioned problem
underidentified models are more important, which show a negative degree of
freedom as the number of known parameters is smaller than the number of
parameters that have to be estimated. In this case one usually restricts the
model for example by setting single parameters constant or equal. To give an
example one could recall the basic equation (2.1) of the beginning of this chap-
ter, where the CAR assumption (see 2.1) represents an approach that tries to
deal with the underlying non-identifiability by setting parameters equal, e.g.
setting q(Y = (A XOR B)|Y = A) = q(Y = (A XOR B)|Y = B) as under
CAR q(y|y, γ) is the same no matter which true value that corresponds to the
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observed data is underlying. Consequently, it is actually common to make
several assumptions in order to yield a model that is “just identified” and to
be able to report results of statistical analysis in a precise way. Thus, in many
cases, despite the dilemma expressed in the “law of decreasing credibility”,
models with strong underlying assumptions which point identify parameters
are chosen.
At the first glance, this procedure seems to be reasonable, because researchers,
who interpret statistician’s analysis, often ask for unique results in order to
be able to make clear conclusions and possibly adapt arrangements. As long
as assumptions are plausible and do not yield misleading answers, I think it is
useful to involve them. Especially if these assumptions lead to point identified
results this is quite preferable. Unfortunately, frequently assumptions are used
whose contentual justification is not and often even can not be checked and
instead of a correct analysis being the objective, point identified, clear results
are required (Koopmans and Reiersol 1950, p. 169). But what benefit does
a model entail which yields precise results that easily can be interpreted, but
which actually provides wrong conclusions?
In my opinion partial identification represents a suggestive answer to this trade-
off between requesting a precise point identified parameter on the one hand
and using a model that includes justified assumptions only and hence accounts
for uncertainty on the other hand. Therefore, I want to recall the approach of
partial identification in this section.
Because of the fact that one can distinguish between different kinds of uncer-
tainty, I want to introduce the terminology which will be used here for these
different types first in order to avoid confusion later on. After having ad-
dressed the basic idea of partial identification and some fields of application,
I will summarize some formal findings of Manski [2003], who investigated the
topic of partial identification in the context of missing data. Subsequently,
I want to apply those developments in the framework of coarsened data and
recall two possible points of view analysis could be based on.
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2.2.1. Distinguishing between two kinds of uncertainty

Because of the general disagreement in respect of the notation of different
kinds of uncertainty, I explicitly want to establish the notation that will be
used here.
In the framework of a statistical analysis it is common to account for the
kind of uncertainty that can be attributed to finite sampling. As infinite sam-
pling cannot be realized in practice, quantities cannot be treated as certain.
Confidence intervals represent generally used instruments that are able to ac-
count for uncertainty due to finite sampling by showing a region of values
that cover the true parameter with given probability 1 − α, where α is the
significance level. While Tamer [2010] calls this kind of uncertainty “statis-
tical uncertainty”, Vansteelandt et al. [2006] uses the designation “sampling
imprecision”. In order to avoid confusion, I will use a notation that completely
differs from the existing ones and hence in this thesis this kind of uncertainty
that is an implication of finite sampling will be called first kind of uncertainty.
Even if the first kind of uncertainty is usually involved into statistical analyses,
it is frequently ignored in the case in which the second kind of uncertainty is
present. The in this thesis so-called second kind of uncertainty describes uncer-
tainty that is induced by the lack of information, for instance in the presence
of missing or coarse data. In literature the second type of uncertainty is some-
times called “ignorance” (Vansteelandt et al. 2006, Molenberghs et al. 1999).
As this thesis is concerned with coarsened data, it is mainly concentrated on
how to deal with the second type of uncertainty. Nevertheless, one should
not forget - like it is often done - to incorportate the first type of uncertainty.
Therefore, in the context of partial identification the inclusion of both kinds
of uncertainty will be addressed on page 38, where on page 51 it will be ex-
plained how the first kind of uncertainty can be integrated additionaly in the
framework of sensitivity analysis. Even if these approaches show how the first
kind of uncertainty can be incorporated as well, in this chapter estimation will
not be covered and the notation will be in terms of probabilities and not in
terms of frequencies, that will be used in Chapter 4 for the first time.
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2.2.2. The main idea of partial identification

As explained in the context of identifiability in the beginning of this chapter,
researchers who are concerned with non-identifiable models often impose as-
sumptions in order to obtain point identified parameters. A basic difference
of partial identification to this common procedure consists of the conception
that identification no longer has to be regarded as a binary event by either a
parameter being identified or non-identified (Manski 2003). Instead it is ad-
mitted to impose some justified assumptions that do not have to induce point
identified parameters, but at least identify the parameter of interest in parts
(i.e. these assumptions “partial identify” the parameter of interest) compared
to the set of parameters that seemed to be possible in the beginning of the
analysis. Thus, estimators for parameters of interest which follow from partial
identification can either be without any information, partial identified or point
identified depending on the underlying plausible assumptions being available
in this situation.
The main idea of partial identification consists of the point of view that even if
only a few plausible assumptions are made and consequently some second kind
of uncertainty remains, results can contain valuable information. Therefore,
the basic procedure of partial identification first uses the empirical evidence
only by using information implied by the data without involving additional
assumptions. In a second step the researcher faces possible assumptions and
includes those which seem to be justified and there exists a common consesus
about their validity (Tamer 2010, p. 169). Hence, in the frame of partial iden-
tification mostly nonparametric models with minimal assumptions and partial
identified parameters result.

2.2.3. Fields of application

In order to gain an inside of the preference of partial identification for dealing
with the second kind of uncertainty, it could be interesting to present some
areas in which partial identification could be imaginable or already carries
weight. Afterwards I want to show an illustration of the two step procedure
of partial identification.
Partial identification has mostly been neglected in econometrics as well as
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statistics before the 1990s. Reasons for the rare application of this method
could be the difficulty to evaluate the plausibility of serveral assumptions as
well as the fact that by means of various solutions it is essential harder to im-
prove policies which is an usual task within the field of econometrics (Tamer
2010, p. 174–175). Nevertheless partial identification has started to be more
popular in econometrics. Some examples like the approach of Marschak &
Andrews, who deduced bounds for the parameters of a production function
by partial identification, as well as the development of Fréchet bounds, that
restrict the resulting possible joint distributions of random variables X and Y
by an upper and a lower limit for the case that the corresponding marginal
distributions of X and Y are given, can be found in Tamer [2010].
Another field of application of partial identification consists of the analysis of
missing and misclassified data. In order to illustrate partial identification in
those situations of data, I want to present two examples now. While the first
example shows partial identification as a useful tool for dealing with missing
data, the second illustration offers an partial identification based approach for
the situation of missclassified data. Both examples demonstrate the two step
procedure which first uses the empirical evidence only and then involves fur-
ther assumptions.
As a first example I regard the situation of Stoye [2009b]. Here the problem
is faced whether offenders should be assigned to residential or nonresidential
treatment with regard to preventing recidivism. In this situation the proba-
bility that offenders who are assigned to a special treatment (residential (r),
nonresidential (n)) will again turn to crime (c) (P (Yt = c), t=r,n) are the
probabilities of interest, which are unknown. Moreover counterfactual proba-
bilities, like P (Yn = c|T = r) and P (Yr = c|T = n) are uninformative, because
it is unknown whether offenders would have been criminal if they had been as-
signed to the other treatment. Partial identification is used now by first using
some information that can be revealed from the data generating process and
thus an identification region for the probability of interest yields. Afterwards
some contentual considerations are included like the assumption of “Outcome
Optimization”, which sticks to the idea that judges always assign the right
punishment in the sense that the residential (nonresidential) treatment is only
chosen if the probability of recidivism is smaller for the underlying offender.
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Two more assumptions have been imposed and one yields a shrunk identifica-
tion region compared to the one formed by the empirical evidence only. In this
example partial identification seems to be preferable to an approach simply
assuming that the missing data are ignorable, because the treatment is not
generated by a randomized experiment, but determined by judges. Judges do
not base their decision on random, because they probably assign the residen-
tial treatment to case-hardened criminals, because they want to protect society
from those and to avoid future serious crimes.
Moreover I want to illustrate the the two step procedure of partial identifi-
cation in the context of misclassification. Molinari [2008] has developed an
direct missclassification approach which is based on partial identification and
that I want to summarize now. By means of direct misclassification approach
a relation between the distribution of the true and the misclassified variable is
expressd by a linear system of simultaneous equations, in which the coefficients
are described by the matrix of misclassification probabilities that converts the
true variable into the observation which is potentially misclassificated. This
underlying equation is similar to the basic equation (2.1) and the relation
between these equations is discussed more detailed in 2.2.4. Partial identifi-
cation of the coefficients is started by using the empirical evidence only and
thus identification region HP [Π∗] is focused first, which denotes the set of Π’s
which fulfill the typical probabilistic constraints, like ∑J

i=1 πij = 1 and πij ≥ 0.
After that some assumptions on the missclassfication pattern are imposed; for
example it is assumed that the probability of correct reporting is constant. As
the set of matrices which fulfill the requirements that are derived from val-
idation studies or theories from social sciences is denoted by HE[Π∗], in the
mentioned example one would be concerned with HE[Π∗] = Π : πjj = π. Com-
bining those further assumptions with the initial identification region formed
by the empirical evidence, one yields H[Π∗]=HP [Π∗] ∩ HE[Π∗]. More details
concerning partial identification in the context of misclassification and the re-
lation of misclassified and coarsened data can be found in Subsection 2.2.4.
An additional insight into the topic of partial identification for misslcassified
data can be gained by Küchenhoff et al. [2012].
Regarding these two examples, one can notice that missing (see Manski [2005])
and misclassificated (see Molinari [2008]) data represent typical sources for
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identification problems. Because coarse data are a generealisation of missing
data, partial identification could be possible for this case as well. Therefore,
I could imagine that apart from econometrics partial identification could be
quite useful in several other fields of application, because as long as researcher
base their findings on questionnaires, missing, missclassified and coarse data
are quite common and partial identification could represent an appropriate
answer to these problems.
In the beginning of this chapter it has been announced that it could be in-
teresting to establish a connection from coarsened data to other areas, like
misclassified data. This will be done by an excursus now.

2.2.4. Excursus: Relation of coarsened and misclassified
data in the case of categorical data

In the previous subsection an example has shown that partial identification
represents an useful approach not only for dealing with coarsened data, but
also with misclassified data. Thus, it could be imaginable that there is a
relation between miclassified and coarsened data. As this relation is especially
direct in the case that is focused in this thesis, namely the categorical data case,
it could be interesting to analyse the connection between those problems here.
The similarity between the coarsened and the misclassified data problem I want
to illustrate by transferring basic equation (2.1) developed in the beginning of
this chapter into the context of misclassified data.
In the presence of misclassification one is concerned with a similar problem
like in the case of coarsened data, namely that the variable of interest cannot
be observed like requested. But instead of coarsening being the problem, here
one sometimes observes wrong categories. In order to deal with this problem
Molinari [2008, p. 82] introduced the direct misclassification approach that
can be expressed by (see equation (1.1) of Molinari [2008, p. 82], but adjusted
notation)

P (W = 1)
...

P (W = J)

 =


P (W = 1|Y = 1) · · · P (W = 1|Y = J)

...
...

P (W = J |Y = 1) · · · P (W = J |Y = J)




P (Y = 1)
...

P (Y = J)

 ,
(2.7)
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where Y again denotes the variable of interest, which cannot always be ob-
served in a correct way. Additionaly variable W , that labels the observed
variable, is introduced, where “W = i” means that the observed realization is
i and “Y = j” means that the true realization of interest is j. Therefore, in
case of missclassification i is unequal to j and the corresponding probability
P (W = i|Y = j) is greater than zero. In order to show the similarity to
basic equation (2.1) of the beginning of this chapter more obviously, one can
conclude from equation (2.7) the calculation simply for probability P (W = j)
obtaining

P (W = j) = P (W = j|Y = 1) + P (W = j|Y = 2)+ ...+ P (W = j|Y = j)+

...+ P (W = j|Y = J)

=
J∑
i=1

P (W = j|Y = i)P (Y = i) .

(2.8)
Thus, comparing basic equation (2.1) for coarsened data and equation (2.8)
for misclassified data, one can note that the only difference consists of the
fact that instead of having observed variable Y , that could be coarsened, one
observes variable W that could be misclassified.
This explaines the similarity between these two problems of data and why in
both cases similar methods, like partial identification (see Subsection 2.2.3),
can be applied.

After possible fields of application and their relation has been addressed, it
is necessary to recall some formal background of partial identification. Man-
ski has mainly shown how partial identification is able to handle missing data
without making strong and potentially inadmissible assumptions like “missing
at random” (MAR) and developed a promising notation for partial identifica-
tion. Moreover, Manski and Tamer [2002] considered regression models in the
presence of interval data and developed several assumptions under which in
the framework of partial identification simple nonparametric bounds can be
found.
But beside missing or interval data, it could be further imaginable that coarse
data are present in a questionnaire, for example because respondents did not
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want to report their answer in a precise way to preserve their anonymity. This
case is not investigated quite well in the context of partial identification, but
I want to refer some results of Manski [2003] for the mising data case to the
coarsened data problem. But first it could be reasonable to summarize Manski
[2003]’s findings concerning partial identification in the missing data context.

2.2.5. Formal background of partial identification in the
missing data context

In the following I want to recall some basics concerning the formal background
of partial identification. Because these fundamental notations have been de-
veloped in relation with the missing data problem, I want to address this case
first. Below I will refer to the developments of Manski [2003] and Manski
[2005]. Please note that it mainly will be addressed how to deal with the sec-
ond kind of uncertainty and only on page 38 it will be explained how the first
kind of uncertainty can be included as well.
Like already mentioned the starting point of the approach of partial identifi-
cation consists of the empirical evidence only in the absence of any untestable
assumptions. Being P (Y = y) the parameter of interest and g the value which
indicates if data are observed or missing (with g = 1 data being observed
and g = 0 data being missing). Then by the Law of Total Probability one
can follow the so called identification region (Manski 2003, p. 6 with adapted
notation),

H[P (Y = y)] ≡ [P (Y = y|g = 1) · P (g = 1) + γP (g = 0), γ ∈ ΓY ]. (2.9)

All components apart from γ can be estimated by using the empirical distribu-
tions PN(Y = y|g = 1), PN(Y = y) and PN(g = 0). As no information about
y being available for the missing data, γ=P (Y = y|g = 0) is uninformative
and can attain values within the space of probability measures ΓY . Manski
[2003] refers this general definition of identification regions to some special
population parameters of interest, for example means of functions of y and
parameters that respect stochastic dominance as quantiles.
In a second step one can include plausible assumptions concerning the distri-
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bution of interest, like H0[P (Y = y)] ⊂ ΓY , such that the identification of
equation (2.9) can be shrunk to (see Manski [2003, p. 4])

H1[P (Y = y)] ≡ H0[P (Y = y)] ∩H[P (Y = y)]. (2.10)

Manski [2003] proposes some imaginable assumptions on the distribution of
interest that are able to shrink the initial identification region received by the
emprical evidence only. Here a selection of those will be explained, denoted by
A1 and A2. One quite simple postulate is the one that there is no difference
between missing and observed data by assuming (see Manski [2003, p. 26])

A1 : P (Y = y) = P (Y = y|g = 0) = P (Y = y|g = 1). (2.11)

This assumption leads to point identification of P (Y = y), because P (Y =
y|g = 1) can be estimated by the sampling process. Nevertheless this assump-
tion is quite strong, because it implies that responders and nonresponders do
not differ which might be wrong in several cases. Therefore, Manski [2003]
decided to use instrumental variables with values vj that are observed for ev-
ery respondent j and constitute a support for identifying the distribution of
interest P (Y = y). For instance, he suggests the following assumption (see
Manski [2003, p. 27])

A2 : P (Y = y|V = v, g = 0) = P (Y = y|V = v, g = 1). (2.12)

So this assumption is slightly weaker than A1, because only similar respon-
dents and nonrespondents, namely those who exhibit the same value v, are
assumed to follow the same distribution and thus this can rather be justified.
For instance, if there are some Bavarian (V =“Bavarian”) item-nonresponder
concerning the characteristic “preferred party” (Y = y), for example one could
be interested in probability P (Y = “CDU”|V = “Bavarian”, g = 0). Ac-
cording to assumption A2 one would decide that this probability equals the
probability of electing “CDU” given the answer of Bavarian item-responder
(P (Y = “CDU”|V = “Bavarian”, g = 1). This might be more reasonable than
simply using P (Y = “CDU”|g = 1), namely the probability of electing “CDU”
given the answer of all respondents (e.g. German respondents) as it would be
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assumed using assumption A1. In the same way covariables can reveal infor-
mation in other cases as well.
Even if P (Y = y|g = 0) is a priori unknown, by involving A2 one is able to
point identify P (Y = y) by (equation (2.2) of Manski [2003, p. 27])

P (Y = y) =
∑
v

P (Y = y|V = v, g = 1)P (V = v).

Manski [2003] calls this assumption A2 “Assumption MAR” (Manski 2003,
p. 27), but in my opinion this name could be misleading, because concerning
the definition of Little and Rubin [2002] the property of MAR faces the prob-
ability of the missing conditional on the values of the variable of interest by
postulating P (g|yobs, ymis) = P (g|yobs) (and not turned around like here).
Until now the first kind of uncertainty has not been included and it has been
assumed that the empirical estimates of the probabilities are known with cer-
tainty. In practice estimates have to be derived from finite sampling of size
n and hence it is important to address the question of statistical inference.
Creating confidence intervals shows a possibility to include the first kind of
uncertainty and in this respect there are some ideas in the context of partial
identification.
Horowitz and Manski [2000] suggest asymptotic confidence intervals that cover
lower bounds (b) and upper bounds (b) with fixed probability and thus contain
the whole identification region with given probability, namely 1 − α. Conse-
quently their aim was to find an appropriate znα value such that P (bn− znα ≤
b, bn + znα ≤ b) = 1 − α. For that they faced two possibilities. On the one
hand they calculated zn by an analytic way with the disadvantage of getting
very complex covariance matrices. On the other hand they applied bootstrap
sampling where each sample is taken to calculate a bootrap estimate for the
bounds and in this way their distribution can be computed and zn is found.
Imbens and Manski [2004] propose confidence intervals that cover the true
parameter of interest with fixed probability instead of containing the whole
identification region and showed that their interval represents a subset of the
one of Horowitz and Manski [2000]. Because of the fact that the coverage
probability does not converge to 1− α uniformly across various values for the
length of the identification region, Imbens and Manski [2004] add a few adop-
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tions to their original version. Nevertheless some assumptions are necessary
in order to be able to build this interval. One of these assumptions consists
of the postulation that the estimator of the nuisance parameter, namely the
estimator for the length of the interval ˆDelta, is desired to be superefficient
(i.e.

√
N |∆̂−∆N |

p−→ 0, see Lemma 1 of Stoye [2009a]) at zero. Stoye [2009a]
investigated this assumption more precisely and recognized that there are as-
sumptions that are able to weaken this postulation of superefficiency for the
nuisance parameter. Moreover he proposes a new confidence interval that can
be applied without the validity of superefficiency.
After having summarized the formal backgorund for partial identification for
the missing data case, it could also be interesting to reflect about the case of
coarsened data, even if this area has not been investigated quite well. In this
thesis there will be payed particular attention to the case of categorical data.
Hence, I want to confine myself to this special case hereafter.

2.2.6. Some ideas concerning partial identificaiton in the
context of coarsened data

As coarsened data can be regarded as a generalization of missing data (see 2.1),
I want to apply some definitions of partial identification by Manski [2003] in
the framework of coarsened data now.
For this purpose, I want to imagine a situation in which a variable of interest
is able to obtain three possible categories, namely “A”, “B”, “C”, where some
categories cannot be observed in a precise way such that for instance the
observed categories are “A”, “B”, “C”, “A XOR B”, “A XOR C ” and “B XOR
C”. This example is used to keep things simple and one can easily transfer it to
a situation with more categories (e.g. categories “A” to “D”) as well as more
different coarsenened observations (e.g. “A XOR B XOR C”, “A XOR D” ...).
For obtaining a region for the probability of interest P (Y = y), I proceed in a
similar way like for the missing data case of Manski and thus using the law of
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total probability for P (Y = A) the following identification region results (see
also dark green box of Figure 2.3):

H[P (Y = A)] ≡[P (Y = A|Y = A)︸ ︷︷ ︸
1

P (Y = A)+

P (Y = A|Y = (A XOR B))︸ ︷︷ ︸
γ1

·P (Y = (A XOR B))+

P (Y = A|Y = A XOR C)︸ ︷︷ ︸
γ2

P (Y = A XOR C),

∀ possible P (Y = A|Y = y) = γi, i = 1, 2].

(2.13)

Apart from the probabilities that model the coarsening, namely P (Y = A|Y =
(A XOR B)) = γ1 and P (Y = A|Y = AXORC) = γ2, all quantities (namely
P (Y = y)) can be estimated by the sampling process. Using the empirical
evidence only and accounting for the fact that γ1 and γ2 describe probabilities,
γ1 and γ2 have to lie in the interval [0, 1]. Therefore, the following identification
region can be obtained:

H[P (Y = A)] ≡ [P (Y = A), P (Y = A) + P (Y = (A XOR B))+

P (Y = A XOR C)]
(2.14)

The lower bound of equation (2.14) describes the case if the true value of coar-
sened observations like “A XOR B” and “A XOR C” is not “A” and the upper
bound constitutes the situation if the true value of coarsened observations is
always “A”.
Later on, I will show the relation between γ = P (Y = y|Y = y) and q = P (Y =
y|Y = y) (see equation (2.18)) and that there are further restrictions based
on the empirical evidence for q(y|y, γ). Because of the underlying relation
the space of possible γ decreases by involving these restrictions for q(y|y, γ)
and consequently a shrunk form of the identification region in equation (2.14)
might result.
According to the procedure of partial identification after having determined
the identification region involving the empirical evidence only, one can con-
sider further assumptions. Now I want to introduce two assumptions that are
comparable to the ones Manski [2003] has proposed (see equation (2.11) and
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(2.12)), but differ according to the underlying problem, namely coarsened data
instead of missing data:

A1 : P (Y = A|Y = (A XOR B)) = P (Y = A) (2.15)

A2 : P (Y = A|V = v,Y = (A XOR B)) = P (Y = A|V = v). (2.16)

This generally means that the true probability of a category’s occurence does
not depend on the observed value. Thus, in examplary assumption A1 of equa-
tion 2.15 the given observation “A or B” does not reveal any information about
the probability of occurence of category “A”. As in situations with more true
and more coarsened categories observation “A or B” actually does give infor-
mation in the sense that category “C” can not be the true category, it could
be reasonable to condition a priori on all observations that are consistent with
the true value of interest. In this way, here A1 expresses, that probability of
occurence of category “A” is independent of the value that has been observed,
namely if precise category “A”, or coarse categories “A XOR B” or “A XOR C”
have been observed, but other observations as “C” or “B or C” are excluded.
Although the additional restriction that the observed values have to be con-
sistent with the true value of interest is remiscent of the CAR assumption,
it is important to notice that this kind of assumption differs from the CAR
assumption, as within the CAR assumption it is conditioned on the true values
and not on the observed values as in A1. A2 only differentiates from A1 by
assuming that the described assumption is only satisfied for given values of an
instrumental variable (see example on page 37).
Moreover contentual assumptions that seem to be plausible in this situation or
can be concluded from similar studies can be imposed, that are able to shrink
the indentification region based on the empirical evidence only. For instance,
I could imagine that researchers are able to evaluate by contentual aspects if
true category “A” is more plausible after having observed “(A XOR B)” or
“A XOR C”. According to this I want to derive a shrunk identification region
that relies on the additional assumption γ1 = P (Y = A|Y = (A XOR B)) ≥
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P (Y = A|Y = (A XOR C)) = γ2 (or vice versa). In this case only one
uninformative probability is left in the underlying identification region

H[P (Y = A)] ≡[P (Y = A) + γ2P (Y = (A XOR B)) + γ2P (Y = A XOR C),

P (Y = A) + P (Y = (A XOR B)) + γ2P (Y = A XOR C)].
(2.17)

Comparing this identification region with the one of equation (2.14) based on
the empirical evidence only, one can note directly the shrunk length of the
interval relying on further contentual assumptions.

length based on empirical evidence only :

P (Y = (A XOR B)) + P (Y = A XOR C)

length based on additional assumptions :

(1− γ2)P (Y = (A XOR B))

Hence, the higher the value of γ2, the shorter the length of the identifica-
tion region based on this additional assumption and the more informative the
assumption, i.e. the more substantial the extent of the interval’s reduction.
Similarly one could include assumptions about γ, for instance assuming γ1 to
lie within [0.4, 1] instead of [0, 1]. The difference to the first proposal consists
of the fact that the underlying idententification region is still dependent on
both parameters γ1 as well as γ2.
I have derived the identification region from the missing data problem Man-
ski [2003] has focused and so until now only the view of conditioning on the
observed data has been regarded (see dark green box of Figure 2.3). In the
beginning of this section the problem has been motivated from a different angle
conditioning on the true variables (see bright green box of Figure 2.3). In this
context the approach to solution has consisted of regarding the q(y|y)’s first
instead of a direct analysis of P (Y = y). In my opinion both perspectives are
reasonable with regard to contentual justification: While conditioning on the
true variable expresses the chronology of the underlying coarsening process in
a proper way, namely that first the true value of the variable exists that gets
coarsened in a second step, conditioning on the observed variable describes
the situation the observer is concerned with, namely that some values of the
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Different points of view

Conditioning on the observed variable 
P(Y=y|Y=yY=yY=yY=y) ….

Conditioning on the true variable 
P(Y=yY=yY=yY=y |Y=y) ….

observed (Y Y Y Y ) true (Y)

A

B

C

A
A

AB

AC…

…

A

AB

AC

…

A
B

P(Y=A)= P(Y Y Y Y =A) P(Y=A|YYYY = A) +

P(YYYY =AB) P(Y=A|YYYY = AB) +

P(YYYY =AC) P(Y=A|YYYY = AC) 

PI for parameter:  P(Y=A) PI for parameter: q1, q2

1

P(Y =AB)= P(Y=A) P(YYYY = AB|Y=A) +

P(Y=B) P(YYYY = AB|Y=B) +

P(Y =C) P(YYYY = AC|Y=C) 

q1

q2

0

true (Y) observed (Y Y Y Y )

Figure 2.3.: Different perspectives as starting points for partial Identification (PI)
in the context of coarsened data.

variable can only be observed in a coarsened way and therfore the task of the
observer consists of concluding the true values from the observed values. The
choice for one of these points of view is not of serious consequences, because
there is a relation between both perspectives’ underlying probabilities, which
one can express in the following way:

P(Y=y|Y = y) = P (Y = y, Y = y)
P (Y = y)

P (Y = y)
P (Y = y)

= P(Y = y|Y=y) P(Y = y)
P(Y = y) .

(2.18)

To this initial situation of this chapter, namely the perspective of conditioning
on the true variable, I want to link now and suggest an alternative way for
partial identification in the context of coarsened data.
Transferring basic equation (2.1) from the beginning of this section to the
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example that is used here, one obtains for P (Y = (A XOR B)) by the law of
Total Probability (see also bright green box of Figure 2.3):

P (Y = (A XOR B)) = P (Y = A)P (Y = (A XOR B)|Y = A)︸ ︷︷ ︸
q1

+

P (Y = B)P (Y = (A XOR B)|Y = B)︸ ︷︷ ︸
q2

+

P (Y = C)P (Y = (A XOR B)|Y = C)︸ ︷︷ ︸
0

.

In this equation several probabilities are unknown, namely q1, q2, P (Y =
A), P (Y = B) and P (Y = C). But partial identification of q1 and q2 and
subsequent resolving for P (Y = A) and P (Y = B) could give information on
those pure true probabilities and partially identify them.
The empirical evidence can not only tell that q1 and q2 take values within
[0, 1], but also some additional hints can be concluded like the fact that q1

and q2 cannot be simultaneously zero if there are some coarsened observations
“A XOR B” and at least one q(y|y) is equal to one if all observations are “A
XOR B”. Similarly if the proportion of “A XOR B” is quite high (small), q1

and q2 cannot be small (high) at the same time. Therefore, there have to be
some restrictions which can be derived from the data only without implying
contentual further assumptions.
First, by rephrasing q1, I want to derive an upper bound for q1 that is always
less than one and hence involves some information about this uninformative
probability in every case:

P (Y = (A XOR B)|Y = A) = 1− P (Y 6= (A XOR B)|Y = A) =

= 1− P (Y = A|Y = A)

= 1− P (Y = A, Y = A)
P (Y = A) .

If “A” is observed, it is obvious that the true value “A” is underlying and there-
fore the quantity P (Y = A, Y = A) can be simplified to P (Y = A). Hence,
P (Y = A) is the only probability that cannot be estimated from data. Because
the true value “A” is only possible for observations “A” and “A XOR B”, the
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probability P (Y ∈ {A, (A XOR B)}) seems to be a plausible guess. Because
of

P (Y = A) = P (Y = A|Y = A) · P (Y = A) +

P (Y = A|Y = (A XOR B)) · P (Y = (A XOR B))

≤ P (Y ∈ {A, (A XOR B)})

= P (Y = A) + P (Y = (A XOR B)),

this proposed probability is greater than the required probability. Therefore,

q1 = P (Y = (A XOR B)|Y = A) ≤ 1− P (Y = A)
P (Y = A) + P (Y = (A XOR B))

= P (Y = (A XOR B))
P (Y = A) + P (Y = (A XOR B))

represents an adequate upper bound whose components can be estimated. Be-
cause of the fact that in this chapter one considers the theoretical point of
view, the corresponding empirical estimates will be derived in Chapter 4 when
these findings will be applied.
One can directly note that this bound is always smaller than one apart from
the case in which there are no precise observations availabe, i.e. P (Y = A) = 0.
This fact makes this upper bound q1 quite requirable, because in every case
of coarsened data there is information that can be gained from the data only.
This result seems to be quite surprising and astonishing, but the reason for
this inherent information can be explained by the fact, that there are some
precise observations available that are responsible for the shrinking of q(y|y)
to a value below one. For instance, if there are some “A” values observable in
a precise way, then q1 = P (Y = (A XOR B)|Y = A) will be less than one,
because the value of P (Y = A|Y = A) is greater than zero in this case and
P (Y = A|Y = A) + P (Y = A|Y = A) = 1 has to be satisfied.
Moreover I have derived an upper bound by an alternative way as appears
from the appendix. It can be shown that this upper bound is always greater
than the one I have proposed here (see Appendix A) and therefore it reveals
less information.
Concerning the search for a nonzero lower bound of q1, I noticed that one can-
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2. Epistemic uncertainty

not calculate a lower bound without imposing further assumptions. As by using
the data only one cannot exclude the case that all observations “A XOR B”
have been produced by true values “B”, q1 = P (Y = (A XOR B)|Y = A) = 0
could be imaginable and therefore no lower bound that is larger than zero can
be found.

Interaction of q1 and q2

Smallest
feasible q1

Greatest
feasible q2

Smallest
feasible q2

IN GENERAL:

EXTREME  
CASE 2:

EXTREME  
CASE 1:

Greatest
feasible q1

Figure 2.4.: Interaction of q1 and q2 in extreme and general cases.

In Figure 2.4 the range of q1 and q2 and the underlying interaction between
those probabilities is illustrated for given data. If true underlying values “A”
are always observed in a precise way and thus for those true values no coarsened
values “A XOR B” are observable, i.e. q1=0 (see extreme case 1), the corre-
sponding q2 = P (Y = (A XOR B)|Y = B) = P (Y=A OR B∩Y=B)

P (Y=B) attains its
upper bound, namely q2 = P (Y=(A XOR B))

P (Y=B)+P (Y=(A XOR B)) . Explained in a contentual
way probability q2 is maximal if all observed coarsened values “A XOR B” are
produced by true underlying “B” values where this fits to the described situ-
ation that all “A” values are precisely observed. In data situations in which
the true value “B” is always observed in a coarsened way “(A XOR B)” (i.e.
P (Y = B) = 0), this upper bound attains its maximal possible value of one
( P (Y=(A XOR B))
P (Y=(A XOR B))+P (Y=B) = 1). Because of the fact that precise observations
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are responsible for being able to obtain an upper bound that is smaller than
one, this makes sense indeed. Analogously extreme case 2 can be illustrated.
In summary, even if it could be found an upper bound for q1 that is less than
one and therefore useful as long as there are coarsened observations, a lower
bound cannot be found for reasons as explained.
After having involved the empirical evidence into the development of an identi-
fication region for q1 and q2, one can think about justified further assumptions,
as “coarsening completely at random”. If this quite strong assumption does
not seem to be appropriate, one could introduce an instrumental variable vj
which is known for all j respondents and assume “coarsened at random”, in the
sense that the q(y|y) values are equal conditional on the instrumental variable,
namely P (Y = (A XOR B)|Y = A, v) = P (Y = (A XOR B)|Y = B, v).
Moreover, researchers might have an idea about the magnitude of q1 and q2.
Therefore, Nordheim [1984] introduces quantity R = q2

q1
that reflects the rela-

tion of both unknown probabilities by factor R. In practice exact true R might
be unknown, but it could be imaginable that a rough evaluation of R could be
derived from contentual considerations, former studies or experiments. Intro-
duction of auxiliary variable R describes a generalisation of the “coarsening at
random” assumption, which results with R being equal to one (R = 1 = q2

q1

⇔ q2 = 1 · q1 ⇔ CAR). Therefore, using R is much more flexible than simply
thinking about the possiblity if CAR might be satisfied.

After having summarized the advantage and formal background of partial
identification, in this subsection I have proposed two possibilities for partial
identification in the context of coarsend data. The first suggestion is based
on the findings of Manski [2003], faces probabilities of interest directly and
gradually imposes some assumptions on the probabilities conditioning on the
observed values, namely γ. The second idea refers to the inital situation of
the beginning of this chapter and partial identification is conducted with the
probabilities conditioning on the true values, namely q(y|y). Table 2.1 gives
an overview of both ways of proceeding.

In Chapter 4 an approach will be presented that deals with epistemic uncer-
tainty by means of a multinomial logit model. In this framework I want to
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Approach 1 Approach 2
Starting P(Y=y)= P (Y = y) =
point =

∑
Y P (Y = y|Y = y)P (Y = y) =

∑
Y P (Y = y|Y = y)P (Y = y)

Identification - P (Y = y|Y = y) = q
region for... P (Y = y) - Deriving region for

P (Y = y) subsequently
Assumptions P (Y = y|Y = y) = γ P (Y = y|Y = y) = q
on... (conditioning on (conditioning on
(point of view) the observed variable) the true variable)

- γ ∈ [0, 1] q ≤ P (Y=(A XOR B))
P (Y=A)+P (Y=(A XOR B))

Empirical
evidence - derive further assumptions - No lower bound q1

from approach 2 by can be found
using relation between
those approaches

- Make plausible - CCAR
set-valued assumptions - CAR

Further about γ - Assumption about
- Evaluate by R = q2

q1
assumptions contentual aspects

if γ1 > γ2
or vice versa

Table 2.1.: Two proposed approaches for partial identification of P (Y = y) in the
context of coarse data.

include some ideas of partial identification by mainly using the second ap-
proach, because here the idea of epistemic uncertainty, namely a true variable
exists first that is coarsened in a second step, is reflected in a proper way. I
will involve assumptions derived from the empirical evidence as well as fur-
ther assumptions as proposed here into the model and evaluate their benefit
using simulated data. Especially it could be interesting to investigate the in-
formation that can be revealed without making contentual assumptions and
to regard the corresponding bounds that can be derived by the methods de-
scribed here.
All in all, I viewed partial identification as a very useful method if someone
wants to analyse data without making untenable assumptions. Sensitivity
analysis represents an alternative method that pursues the same goal, but
proceeds from a different angle. But before explicitly comparing those two
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approaches in Section 2.4, I want to present some definitions, properties and
examples of the procedure of sensitivity analysis first.

2.3. Sensitivity analysis

The motivation of choosing sensitivity analysis as a method of analysis is
similar to that of partial identification. The analyst does not insist on point
identification of estimators and prefers making justified assumptions only. Nev-
ertheless, the procedure of sensitivity analysis differs from the one of partial
identification. For giving an overview of sensitivity analysis, I first want to re-
call its basic idea and formal definitions that have been proposed by Vanstee-
landt et al. [2006]. As sensitivity analysis is used as an important tool for
dealing with nonrandom missingness, I want to explain models of that kind
next, that have already been proposed in literature (Molenberghs et al. 1999,
Kenward et al. 2001 and Baker et al. 1992). Finally, I want to consider how
basic definitions and ideas, mainly developed for the missing data problem,
could be transferred to the case of coarsened data. Please note that mainly
the second kind of uncertainty will be addressed and solely on page 51 it will
be mentioned how the first kind of uncertainty can be incorporated.

2.3.1. Basic idea and some fundamental definitions

Instead of relying on one estimator which is derived from a special model,
sensitivity analysis involves a range of estimators that can be obtained across
various plausible values of the sensitivity parameter δ. The idea of a sensitivity
parameter consists of the fact that even if sensitivity parameters are not identi-
fied, given a sensitivity parameter the parameter of interest θ is (Vansteelandt
et al. 2006). Therefore, it is reasonable to calculate the parameter of interest
for different models, namely for different values of the sensitivity parameter.
Molenberghs et al. [1999] regard the missing data problem in the framework of
sensitivity analysis and name the whole region of values θ that are derived from
different plausible values of the sensitivity parameter δ as ignorance region for
θ that is denoted by ir(θ,∆), with δ ∈ ∆. But before one is able to show the
definition of this ignorance region, some formal notations have to be recalled
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which are adjusted in order to stay consistent with the previous sections.
Robins et al. [1997] suggests to postulate that the underlying model class M(δ)
has to be non-parametric saturated (NPS) by assuming that

f(Yobs) =
∫
f(Y,G, δ)dYmis

has to be valid, where δ denotes the sensitivity parameter, Y denotes the vari-
able of interest, where Yobs denotes its observed and Ymis its missing part, and
G is 1 if Y is observed and 0 if it is missing. In words this postulate means that
for each distribution of the observed data there has to be a single missing data
process in the class and a unique law for the complete data such that f(Yobs)
is the marginal distribution of the observed data under the joint law f(Y,G, δ)
(Robins et al. 1997). In simplified terms this means that for each imaginable
value of the sensitivity parameter the class M(δ) covers an unique law that
leads to the observed data. If this postulate is satisfied for each model, the
parameter of interest is identified in an unique way as well (Vansteelandt et al.
2006). One can include information about the underlying missing process by
constraining the possible values of the sensitivity parameter δ to the values
that seem to be plausible, e.g. δ ∈ ∆, and thus model class M(δ) = ∪δ∈∆M(δ)
should be regarded (Vansteelandt et al. 2006).
Under the requirement ofM(δ) being a non-parametric saturated class, Vanstee-
landt et al. [2006] define the ignorance region as (see equation (3.2) of Vanstee-
landt et al. [2006, p. 959], but adjusted notation here):

ir(θ,∆) = {θ{f(Y )} : f(Y ) =
∫
f(Y,G)dG with f(Y,G) ∈M(δ)}

where M(δ) is NPI class.
(2.19)

Estimators of ir(θ,∆) are named Honestly Estimated Ignorance Region (HEIR)
for θ (Vansteelandt et al. 2006). There is the property of weak consistency for
point estimators that is useful in order to evaluate them. Vansteelandt et al.
[2006, p. 962] developed a generalisation of the concept of weak consistency
for point estimators to HEIRs by postulating weak convergence of every single
point estimator θ̂(δ) to its underlying true value θ(δ) across all δ ∈ ∆. Under
this condition the HEIR overlies the true parameter of interest with arbitrary

50



2.3. Sensitivity analysis

large probability if sample size increases. This is a quite preferable feature.
An alternative concept of weak consistency can be viewed in the context of
investigating if HEIR is a proper estimator of the identification region. For
this purpose, one calls a HEIR îrN(θ,∆) weakly consistent for the identifi-
cation region ir(θ,∆) if the underlying maximum distance becomes arbitrary
small with increasing sample size (Vansteelandt et al. 2006, p. 967). Thus, the
concept of consistency has been developed in two different ways, namely weak
consistency of the HEIR for the true value as well as for the true ignorance
region.
This ignorance region only accounts for uncertainty due to incompleteness (i.e.
second kind of uncertainty, see Subsection 2.2.1) and neglects uncertainty that
can be attributed to finite sampling (i.e. first kind of uncertainty, see Sub-
section 2.2.1). In Subsection 2.2.1 it has been emphasized that it is essential
to distinguish between these two kinds of uncertainty and that one should
not forget to incorporate the first kind of uncertainty within the analysis of
missing or coarse data. There are some approaches how one could account for
both kinds of uncertainty by combining the idea of confidence intervals, that
are instruments for dealing with the first kind of uncertainty, and ignorance
regions, that aim for the second kind of uncertainty. In this way one obtains
the so-called region of uncertainty URp(θ,∆).
For calculating this region of uncertainty, the following notation might be
helpful. δl and δu denote the values of the sensitivity parameter that belong
to the lower and the upper bound of the ignorance region for θ, such that
ir(θ,∆)=[θl, θu] = [θ(δl), θ(δu)]. Under two assumptions, namely that for θ
consistent and asymptotically normal estimators and standard errors exist ac-
cording to model classes M(δl) and M(δu) (Assumption 1, see Vansteelandt
et al. [2006, p. 960]) and that the observed data are independent of δl and δu
as well as of θl and θu (Assumption 2, Vansteelandt et al. [2006, p. 960]), the
pointwise uncertainty interval URp(θ,∆) can be constructed

URp(θ,∆) = [CL, CU ] = [θ̂l − cα∗2 se(θ̂l), θ̂u + cα∗
2
se(θ̂u)], (2.20)

where the critical values cα∗
2

can be determined by equation (4.3) of Vanstee-
landt et al. [2006, p. 961]. With probability of at least (1 − α) this region
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overlies θ(δ) uniformly across all possible sensitivity parameters δ ∈ ∆ under
the corresponding model class M(δ). From this proposition one can follow
that for arbitrary δ0 ∈ ∆ the pointwise uncertainty region covers the true
value of the parameter of interest, namely θ0 = θ(δ0), with the requested given
probability. Pointwise uncertainty regions as tools for partially identified pa-
rameters represent a generalisation of confidence intervals that can only be
used for point identified parameters (Vansteelandt et al. 2006).
Another starting point for constructing uncertainty regions prefers to request
that it covers the ignorance region instead of the true parameter with given
probability. Thus, it can be decided to construct a rather conservative uncer-
tainty regions URs(θ,∆) by choosing the critical value cα

2
to be the (1 − α

2 )
quantile of the standard normal distribution. In this case all values within
ir(θ,∆) are covered concurrently with given probability (1 − α). Apart from
this described concept of strong coverage, Vansteelandt et al. [2006, p. 963–
965] introduce uncertainty regions URw(θ,∆) based on weak coverage that
does not cover all values of ir(θ,∆), but at least most of them with given
probability.
Thus, because of the possibility of viewing concepts in respect to the true pa-
rameters on the one hand and to the ignorance region on the other hand, not
only two versions of concepts in the context of weak consistency result, but
also in the frame of construction of uncertainty regions.
After having shown the basic idea and some definitions of sensitivity analysis,
I want to concentrate on one common field of application now, namely the
modelling of nonrandom missingness. As missing represents a special case of
coarsened data, I expect from this procedure to be able to refer some ideas to
the coarsened data problem.

2.3.2. Modelling nonrandom missingness

It has already been indicated that one has to be careful with making assump-
tions like MAR or MCAR in the presence of missing data (resp. CAR and
CCAR, in the case of coarsened data) , because in many situations this method
is not justified. Therefore, a general procedure that is able to deal with differ-
ent types of missing processes without the demand of any a priori information
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on the missingness would be desirable instead. Beside partial identification
(see Section 2.2), sensitivity analysis represents a possible approach for such a
procedure by formulating and comparing a number of possible non-ignorable
(NI) models with the MAR model being a special case (Molenberghs et al.
2001, p. 17). But not all those NI models that can be derived seem to be ap-
propriate. Hence, examples of Molenberghs et al. [1999] illustrate that different
NI models that devote equally fits to the observed data lead to different pre-
dictions of the unobserved data. This shows the importance of incorporating
plausible assumptions made on contentual grounds. Thus, corresponding to
the idea of sensitivity analysis not only one special model (like a MAR model),
but all NI models that are consistent with the observed data and seem to be
justified should be included into the analysis.
For this purpose, in literature some suggestions have been made, where I de-
cided to describe briefly an intuitive approach used for instance by Rubin et al.
[1995], the selection model used for instance by Kenward et al. [2001] as well
as the model of Baker et al. [1992].
In the framework of NI models, most literature concerns the case of contingency
tables that exhibit some missing cells. For reasons of simplicity, I consider the
case of a 2× 2 contingency table.
Being interested in the proportion/counts of a special value of a bivariate char-
acteristic (e.g. proportion of “yes”), forming the best-case-worst-case interval
seems to be a very simple and evident approach for obtaining a range of pos-
sible parameters instead of a single one. For instance, Rubin et al. [1995]
proceeded like that by calculating the proportion θ who participated in the
plebiscite and elected for independence. For this, they calculate the propor-
tion once classifying all “don’t know” answers as “no” (“worst case” → θl )
and once as “yes” (“best case” → θu) obtaining interval [θl, θu]. In the same
way Kenward et al. [2001] calculate the best-case-worst-case interval for the
proportion of HIV positive women under the presence of some women with
unknown HIV status. As these intervals are frequently very wide, one rather
uses this approach as a starting point and further models that shrink those
initial ones might be helpful.
Selection models used by Little [1994] are a quite popular tool to face different
NI models and thus include assumptions of different kinds. In the following
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πg1g2,ij denotes the underlying cell probabilities of a 2 × 2 contingency table,
where the meassurement of ocassion 1 (with outcome categories j=1,2) and
occation 2 (with outcome categories k=1,2) can either be missing (indicated
by g1 = 0 for occation 1 and g2 = 0 for occation 2) or observed (denoted by
g1 = 1 for occation 1 or g2 = 1 for occation 2). Selection models characterize
cell probabilities πg1g2,ij as the product of two components, namely pij that
describes the meassurement process and qg1g2|ij that gives some indication of
the missing mechanism. Thus, the selection model can be formulated as (see
equation (1) of Kenward et al. [2001])

πg1g2,ij = pijqg1g2|ij. (2.21)

This equation shows the same contentual foundation like basic equation (2.1),
but differs not only in respect of the notation, but also because here analysis
is refered to contingency tables and therefore joint probabilities of bivariate
(to keep things simple) characteristics are regarded. Different NI models are
faced by imposing various restrictions on probability qg1,g2|ij that describes the
non-response. For instance, Molenberghs et al. [1999, p. 111–113] regard three
model classes. Dependend on the kind of restrictions, different degrees of free-
dom are obtained and thus non-saturated, saturated or overspecified models
yield (see Kenward et al. [2001, p. 34]). While Model class I imposes quite
strong restrictions by assuming MAR or even MCAR, in Model class II and
III a nonrandom missigness process is considered, where Model II admits a va-
riety of different dependence structures for the missing process and Model III
at least postulates that the missingness of the first event’s value is independent
of the missingness at the second one’s value. In this way a range of different
models without making untenable assumptions are accounted. Nevertheless,
it has been shown by Molenberghs et al. [1999] that it is reasonable to think
about contentual assumptions in order to restrict the number of imaginable
models.
Another suggestion concerning models that are able to face nonrandom miss-
ingness process comes from Baker et al. [1992]. Their model can be expressed
as a special selection model by formulating its parameters in terms of qg|ij from
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equation (2.21) and hence the model of Baker et al. [1992] can be written as
(see equation (2) by Kenward et al. [2001]):

π01,ij = π11,ijαij

π10,ij = π11,ijβij

π00,ij = π11,ijαijβijδ

with αij = q01|ij

q11|ij
, βij = q10|ij

q11|ij
, δij = q11|ijq00|ij

q10|ijq01|ij
.

(2.22)

While parameter α models the missing of the first occasion, parameter β ex-
presses the kind of missing of the second occasion. Parameter δ represents
the additional effect that is present if at both occasions missing values are
produced. Baker et al. [1992, p. 645] have shown that the latter parameter
is independent from j and k. Using different dependence structures for pa-
rameter α and β by either setting them constant or admitting dependence
on the first/second occasion, nine models BRD1 − BRD9 result that have
been proposed by Baker et al. [1992]. For illustration of these models, I want
to confine myself on the interpretation of a selection, namely BRD1(α, β),
BRD2(α, βj), BRD8(αj, βk). BRD1(α, β) can be regarded as the model that
involves MCAR assumption, because missing of both characteristics is inde-
pendent of the values of both characteristics. As missing at the second occasion
is only dependend on the values of the first occasion, but not on the values of
this occation itself, BRD2(α, βj) represents a MAR model. An example for
a nonrandom model is given by BRD8(αj, βk), which admitts dependence of
the missingness on the value of the corresponding question (α which models
missing of the first occurence is dependend of the value of the first occasion
(j), the same for β respectively). Integrating some notions from sensitivity
analysis, I understand parameters α and β as sensitivity parameters that de-
termine the underlying missing model. For each value of these parameters,
a different model results and thus different parameters of interest are calcu-
lated. Thus, the in this way obtained range of paremeters of interest forms the
ignorance region. For more details concerning this approach see Baker et al.
[1992], Molenberghs et al. [1999, p. 113], Molenberghs et al. [2001, p. 19–20]
and Kenward et al. [2001, p. 35–36].
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Using selection models as well as the model of Baker et al. [1992] (as a special
selection model) leads to a range of models. Thus, not only one model, but
some models are taken into consideration. This fact represents the fundamen-
tal idea of sensitivity analysis. In summary there are already some findings
concerning modelling of nonrandom missingness by means of sensitivity anal-
ysis. As coarsening being a generalisation of missing data, it could be worth
to apply some of these ideas in the coarsened data context. But before, I
want to give a brief excursus concerning literature that shows how by means
of sensitivity analysis maximum likelihood estimators can be found in case of
partially categorized data.

2.3.3. Excursus: Sensitivity analysis of partially categorized
data based on contingency tables

Sensitivity analysis in the context of missing data is often based on contingency
tables (see Subsection 2.3.2). There are already existing a few approaches how
maximum likelihood estimators in the presence of partially categorized data
represented by a contingency table can be found. As a short excursus, I will
explain the initial situation of three proposals and refer to the corresponding
literature only.
Hocking and Oxspring [1974] show how one can deal with a situation in which
there is given an original complete contingency table and a further table which
can be derived from the origninal one for example in the sense that the first two
columns have been combined. An example of application could be a question-
naire at a doctor, where some patients have to fill in an extensive questionnaire,
while the majority must be classified by means of a questionnaire with limited
or aggregated questions.
Blumenthal [1968] faces a situation in which the observer can classify major
categories only, but distinguishing subcategories may be difficult. For example
this situation can be present whether the observer prefers to make no distiction
in doubtful cases or he behaves like this because of reasons of saving costs. Par-
tial classified contingency tables are also addressed by Nordheim [1984] who
also addresses the case of nonrandomly missing data. Because the parameters
are not identified in the framework of maximum likelihood estimation, he in-
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troduces an additonal parameter which is the quotient of two parameters of
interest.
If one is interested in one of these inital situations, please refer to the corre-
sponding literature. Here I will try to transfer the models of Subsection 2.3.2
that have already been applied for the missing data problem to the coarsened
data.

2.3.4. Refering some ideas to the problem of coarsened data

The issue of having too little a priori information about the missing process
can be generalized to the coarsened data context (see Subsection 2.3.2), as
determining the underlying coarsening process represents the key problem. So
if the coarsening process were known, basic equation (2.1) could be resolved
for the parameter of interest and the corresponding problem would vanish into
the air. Thus, regarding several NI models could be reasonable for coarsened
data as well.
For the case of missing data it was suggestive to regard two variables and thus
to choose a depiction of data in contingency tables, because in this way for
instance one could model the dependence of the missingness of one variable
on the value of the other one. In the context of coarsened data I decided
for reasons of simplicity to view the case of one variable only. As here the
dependence of the coarsening on the underlying true value describes the center
problem, this procedure might be sufficient as a first step. Thus, I modify the
selection model of equation (2.21) to

πg,i = piqg|i.

Component πg,i represents the joint probability of the coarsened observation
and the true value. This probability can be decomposed as the product of
probability pi, that can be interpreted as probability concerning the true value,
and probability qg|i, that expresses the coarsening mechanism in that way that
it shows the transition from the true value of the variable of interest to its
coarsened form. The latter component, namely qg|i, will be in the center of the
following considerations in order to develop a general NI model.
By analogy with the procedure by means of selection model in the missing
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data context, one could impose several restrictions to qg|i in order to obtain
different models. To keep things simple, I want to face a situation, in which
values “A”, “B”, “C”, “A XOR B” and “A XOR C” can be observed. Then for
instance the coarsening of true value “A” to “(A XOR B)” could be of interest
and thus modified selection model for

π(A XOR B),A = pA · q(A XOR B)|A

could be regarded. In this case restriction of q(A XOR B)|A to q(A XOR B) would
lead to a MCAR model, because under this postulation the coarsening would
be independent of the true underlying value “A” and thus q(A XOR B)|A =
q(A XOR B)|B = q(A XOR B) would result. If dependency of q(A XOR B)|A on the
true value is admitted, NCAR model and thus a NI model yields.
Please note that there is an important difference in this procedure compared
to the case of missing data described in Subsection 2.3.2. Because of the
fact that a value can either be missing or observed, missingness describes a
binary phenomenon and hence the number of selection models that model
different probabilities πg1,g2,ij is limited. As for instance, if you remember the
situation of contingency tables in Subsection 2.3.2, three models are of interest,
namely those that model target variables π01,ij, π10,ij and π00,ij. If one refers
the model of this subsection with one variable only to the missing data case,
even only one probability needs to be modeled by a selection model, namely
π0,i. Depending on the number of coarsened categories, there can be much
more selection models in the coarsened data case describing different variables
of interest. Thus, for gaining an insight into the coarsening of true values
“A” in the example above, not only π(A XOR B),A of equation (2.23), but also
probabilities πA XOR C,A (see equation (2.23)) and πA,A have to be explained
by an own selection model. Therefore, I expect increased complexity by the
application of selection models in the context of coarsened data compared to
missing data.
Nevertheless there are some predetermined laws that have to be incorporated
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and thus the number of different models can be reduced. So if one focuses on
the modified selection model

πA XOR C,A = pA · q(A XOR C)|A

as well, one has to account for the restriction that the sum of q(A XOR B)|A from
equation (2.23) and qA XOR C|A from equation (2.23) has to be less or equal
one, because qA|A + q(A XOR B)|A + q(A XOR C)|A = 1 has to be valid. Thus,
q(A XOR C)|A is a priori restricted by qA XOR C|A ≤ 1-q(A XOR B)|A. Additionaly
one has to pay attention because of further restrictions that have been inves-
tigated in the context of partial identification (see Subsection 2.2.6, approach
2). There one could notice that there is a relation between q(A XOR B)|A and
q(A XOR B)|B in the way that if q(A XOR B)|A is maximal then q(A XOR B)|B has
to be zero and vice versa. Both aspects have to be accounted into the require-
ments for qg|i.
After having calculated all possible models (e.g. for π(A XOR B),A) under dif-
ferent plausible assumptions (MAR, NMAR) obtained by different restrictions
on qg|i, for each model an estimator for the parameter of interest (e.g. for
pA) can be concluded. By collecting all those estimators one could obtain the
ignorance region.
Sensitivity analysis and partial identification presented in Section 2.2 can be
considered as very similar approaches. Thus it could be intersting to compare
those methods in respect of several aspects like their objective or their basic
procedure. In this way a better understanding for the approach specific pecu-
liarities can be developed and the decision for one of those can be facilitated.
Therefore, comparison of these two approaches will be the main content of the
next section.

2.4. Comparison of these approaches

In order to summarize the main aspects described in this chapter, it could be
enlightening to establish a connection to the starting problem and to contrast
the proposed approaches.
Recalling the initial situation of the beginning of this chapter, one can notice
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that the concepts and approaches that have been explained in the course of this
chapter, namely ignorability, partial identification and sensitivity analysis, con-
stitute possibilities to react to this problem. By means of basic equation (2.1)
the basic problem of neither knowing the probability of interest P (Y = y)
nor the probability that describes the coarsening process P (Y = y|Y = y) has
been shown.
Partial identification and sensitivity analysis deal with this problem in a simi-
lar way compared to the approach associated with the concept of ignorability.
Consequently the comparison of partial identification and sensitivity analysis
is expected to be more insightful than the one of these two approaches and
the concept of ignorability. Thus, I now want to start with shortly mentioning
basic aspects only that characterize the comparison of ignorability and the
other two approaches, before I mainly want to concentrate on working out the
differences and similarity of partial identification and sensitivity analysis.
While the concept of ignorability rather deals with the initial problem by
imposing assumptions on P (Y = y|Y = y), partial identification and sensi-
tivity analysis insist on avoiding untenable assumptions and thus represent
approaches that incorporate some uncertainty of the second kind. In this way
simply assuming properties that lead to ignorability, namely CCAR or CAR
plus distinctness of parameters, contradict the basic idea of partial identifi-
cation and sensitivity analyis. Nevertheless, if further considerations on the
plausibility of ignorability are made, assumptions like CCAR and CAR can
be embedded within partial identification as well as sensitivity analysis. For
shrinking the underlying identification region, it can be reasonable to add
ignorability underlying assumptions to partial identification, like applied by
approach 2 of Subsection 2.2.6. Sensitivity analysis can support the idea of
ignorability if CAR or CCAR models are involved into the range of models
that form the ignorance region, like explained in Subsection 2.23.
Thus, as long as ignorability is not seen as a concept that is generally able
to deal with the initial problem, but rather as an instrument for improving
identifiability within the framework of partial identification as well as sensi-
tivity analysis, this concept can be brought into accordance with those two
general concepts. Unfortunately, in practice analysts often take ignorability as
a general approach for dealing with incompleteness and rely on assumptions
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like CAR or CCAR (or MAR and MCAR) just to simplify the problem and
without considering if this is justified indeed.
Concerning the comparison of partial identification and sensitivity analysis in
my opinion the most important commonality is reflected by the same objec-
tive that is pursued by these approaches. Thus, partial identification as well
as sensitivity analysis account for the second type of uncertainty by making
plausible assumptions only and do not insist on point identification. Therefore,
in both approaches identifiability is no longer seen as a binary event and par-
tial identified estimators in terms of intervals are admissible as an appropriate
result.
Nevertheless, the way of achieving this objective differs enormously. Partial
identification first uses the empirical evidence only by using information that
can be revealed from the data generating process without making any further
assumptions formed by contentual aspects. Only then in a second step assump-
tions that seem to be justified in this situation are imposed by degrees yielding
more precise results. Thus, partial identification starts from total uncertainty
(second type), which is reduced gradually by adding further assumptions. In
contrast, sensitivity analysis begins by estimating point identified parameters
derived by different models (for different sensitivity parameters) that seem to
be plausible. In this way a set of point identified parameters results, where ev-
ery point in this set is deduced by a different model that is consistent with the
observed data. Hence, sensitivity analysis proceeds by starting with point iden-
tification and including the second kind of uncertainty by the union of several
plausible models. Altogether one can determine that while partial identifica-
tion starts with a rather high degree of the second kind of uncertainty, there
is a precise point estimator in sensitivity analysis at the beginning. Thus, a
main difference between partial identification and sensitivity analysis can be
described by the direction of the procedure, which is illustrated by Figure 2.5
as well.
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Direction of analysis

Total 
Uncertainty

(2nd kind)

Total 
Certainty
(2nd kind)

Parameter without
any information

Partially identified
parameter

Point identified
parameter

PARTIAL IDENTIFICATION

SENSITIVITY ANALYSIS

Including uncertainty (2nd kind) by

Increasing assumptions by

Figure 2.5.: During partial identification reduces the second kind of uncertainty
by gradually adding plausible assumptions, sensitivity analysis starts with point
identified parameters and involves the second kind of uncertainty by implying a
range of plausible models.

Even if their way of proceeding differs, because of focusing on the same ob-
jective, the result is depicted in a similar way. Hence, partial identification
expresses the result by means of identification regions and the result that can
be concluded by sensitivity analysis is named ignorance region, where both
intervals cover all values of the parameter of interest that could be imaginable.
The similarity of those presentations of the result especially can be noted if
one views the approaches that have been developed in Subsection 2.2.6 and
Susection 2.3.4 for the case of coarsened data.
Regarding approach 2 of partial identification in the context of coarsened data,
one can notice that probability P (Y = y|Y = y) is the center of analysis and
restrictions on this probability are used in order to shrink the resulting interval
for P (Y = y|Y = y) and thus the length of the interval that will result for the
parameter of interest will be decreased. A similar approach has been proposed
here within the framework of sensitivity analysis, where one differentiates bet-
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ween various plausible models by restricting probability q(g|i) of the selection
model, which is comparable to P (Y = y|Y = y). The choice of some plausible
models for q(g|i) determines some resulting potential probabilities of interest
by appliying the selection model and the union of those yields the ignorance
region. Thus, if someone includes the same underlying dependence structures
on P (Y = y|Y = y) (e.g. CAR) into a partial identification or sensitivity
analysis based approach, at least similar results should yield, where this em-
phasizes the insignificance of the decision for one of those approaches.
Another similarity between partial identification and sensitivity analysis can
be described by the fact that in both approaches there are ideas concerning
the inclusion of the first kind of uncertainty. Additionaly in both approaches
two types of confidence intervals have been developed. While the first type
of confidence interval covers the parameter of interest with given probability
1 − α, the second type focuses on the coverage of the identification region in
case of partial identification and of the ignorance region in case of sensitiv-
ity analysis. In the area of sensitivity analysis these confidence intervals are
termed uncertainty regions.
Generally both approaches are mostly used in the framework of the missing
data problem and because of that reason the underlying theoretical background
is mainly formulated in this context. Additionaly theses basics have been re-
lated to the problem of coarsened data in this chapter. Moreover an example
has shown that partial identification is able to deal with misclassified data
which could be also imaginable for sensitivity analysis as selection model could
include the misclassification mechanism of Molinari [2008]’s direct misclassifi-
cation approach in the same way like the missing process qg|i. Thus, partial
identification and sensitivity analysis exhibit similar fields of application, like
dealing with missing, misclassified and coarsened data.
In summary it has been revealed that there are some aspects like the underly-
ing objective, the way of including the first kind of uncertainty and common
fields of application that show the contentual closeness of partial identification
and sensitivity. Additionaly, the depiction of the result in terms of intervals is
very similar. Nevertheless, the direction of the procedure represents an impor-
tant difference between those approaches and leads to different corresponding
basic ideas.
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Table 2.2 gives an overview to the similarity and differences in respect to these
aspects.

Partial identification Sensitivity analysis
- Account for incompleteness by

Objective making justified assumptions only
- Does not insist on point identification

- First use empirical - Estimate parameter of
evidence only interest under different

Way of - Then add justified models
procedure assumptions - Regard the union of all models

in order to incorporate
the second kind of uncertainty

→ Direction: Getting → Direction: Adding first
more precise by kind of uncertainty by
adding assumptions regarding several precise models

Depiction of Identification region Ignorance region
the result
Including Two types of confidence intervals available
statistical * Coverage of parameter of interest
imprecision * Coverage of identification/ignorance region
Fields of - Missing data
of - Coarsened data
application - Misclassified data

Table 2.2.: Comparison of two approaches: Partial identification versus Sensitivity
analysis.

In this chapter several possibilities have been shown that can be helpful to
deal with initial situation of epistemic uncertainty described by basic equa-
tion (2.1), namely to get an insight about probability q(y|y) that characterizes
the coarsening process. Generally, one can be concerned with two situations,
namely the case of a known or an unknown coarsening process. In the presence
of a known coarsening process, on the one hand CAR or CCAR assumptions
could be reasonable and thus the corresponding likelihood could be simpliefied
and on the other hand one could try to model the coarsening process (see
Section 2.1). In the case that the coarsening is unknown, partial identification
(see Section 2.1) and sensitivity analysis (see Section 2.3) have been shown
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as approaches that involve some justified assumptions in order to be able to
reveal some information about the underlying coarsening.
Having given an overview about possible approaches that are able to deal with
epistemic uncertainty in this chapter, I want to concentrate on the presence
of ontologic uncertainty in Chapter 3 and think about different methods that
address this type of uncertainty.
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3. Distribution on the power set
as an approach for dealing with
coarse categorical data under
ontologic uncertainty

In Chapter 1 not only epistemic uncertainty has been presented as a reason for
coarse data, but also ontologic uncertainty. At this point it has been worked
out that ontologic uncertainty is present in situations that are described by
indecision, such that coarse data of that kind do not show precise true val-
ues, but these coarse values already represent the truth. It is obvious that
approaches as discussed in Chapter 2 are not appropriate for dealing with on-
tologic uncertainty, wherefore in this chapter I will consider some approaches
that rely on the nature of this type of uncertainty and are able to include it.
First it will be explained, why the procedure of presenting those approaches
will be different compared to the previous chapter that focused on possibili-
ties to deal with epistemic uncertainty. In Chapter 2 the initial situation in
terms of equation (2.1) has been shown first and in the course of this chapter
some approaches have been explained that focus on the corresponding prob-
lem. Under epistemic uncertainty there are true values that potentially can
not be observed in a precise way. Thus, the task of those approaches was to try
to get an idea about these true values and thus to calculate or at least partially
identify the corresponding probabilites (e.g. P (Y = A)). As in the presence
of ontologic uncertainty coarse observations represent the truth, methods that
are able to give some information on the probabilities of the precise values can
not be the main objective. Instead it is of peculiar interest how analysis of data
and its fundamental notions change in the presence of ontologic uncertainty.
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3. Ontologic uncertainty

There are already some approaches that are able to depict ontologic uncertainty
and provide a formal background as the random set theory and the Dempster-
Shafer theory. While random set theory exhibits a well-defined mathematical
framework for data of that kind, the Dempster-Shafer theory is helpful in con-
text of interpretation of basic concepts as well as prediction of probabilities,
when decisions have been made.
Section 3.1 will cover the random set theory, where the basic theory of random
closed sets and the foundations of finite random sets, which are of peculiar
interest here, will be addressed first. Afterwards considerations concerning
coarse categorical data under ontologic uncertainty will be made by applying
some ideas of random set theory. Thereby, general analysis in the presence of
coarse categorical data under ontologic uncertainty is considered and the main
difference compared to commonly used probability theory will be explained.
Section 3.2 proceeds in a similar way with regard to the Dempster-Shafer the-
ory. After having described some basic ideas of the Dempster-Shafer theory,
some conceptions will be used in order to extend the framework for analysing
coarse categorical data under ontologic uncertainty. Some concepts of random
sets are also available in context of the Dempster-Shafer theory, where these
can be easily interpreted in the latter context. But the Dempster-Shafer theory
will not only be useful in order to involve contentual aspects, but also shows
the relation between commonly utilized probability theory and probability the-
ory that will be used in order to include ontologic uncertainty. Notions of the
Dempster-Shafer theory are applied for the case that decisions have already
been made and that one is interested in the predicition of probabilities.
Both goals within the analysis of coarse categorical data under ontologic un-
certainty, namely its general representation as well as prediction when decision
has been made, will be focused in Section 3.3. Thereby, general conceptions
in the presence of data of that kinds will be summarized in terms of the here-
fore introduced ?-notation. Moreover, a summary of the main differences of
the conceptions of the ?-notation and the commonly used probability theory,
which will be called classical probability theory, will be given. In order to
be able to draw an appropriate comparison between those frameworks, it is
important to determine the term “classical probability”.

68



In the following classical probability P (A) will be defined as follows (Meintrup
and Schäffler [2007], adjusted notation):

Definition 2. Let Ω be the sample space, F a sensible σ-algebra, (Ω,F) a
measuring space and P : F → [0, 1] a measure on (Ω,F) with P (Ω) = 1. Then
P is called probability measure and assigns to every event A ∈ F its probability
P (A).

Classical probability has been defined as in definition 2 in order to ensure
that axioms from Kolmogorov are valid (Kolmogorov 1933), which will be of
importance at several points later on and enumerated in the following way
(Narens 2007, p. 8):

1. P (∅) = 0

2. P (Ω) = 1

3. If Ai is a sequence of pairwise disjoint sets, then P (∪∞i=1Ai) = ∑∞
i=1 P (Ai)

(σ-additivity).

There are some rules for calculation that will be further needed and that
already result from general measures µ and by the additional condition P (Ω) =
1 they are simplified only (Meintrup and Schäffler 2007, p. 61). In this way,

a. P (Ac) = 1− P (A)

b. P (∪ni=1Ai) = ∑n
i=1(−1)i+1∑

i≤j1<...<ji≤n P (∩ik=1Ajk)

c1. continuity from below: if An ↗ A then P (An)↗ P (A)

c2. continuity from above: if An ↘ A then P (An)↘ P (A)

is valid, if (Ω,F , P ) is a probability space and A,B,An ∈ F , n ∈ N . The
second rule is often called sieve formula of Poincaré and Sylvester.
Apart from this mathematical definition, there are some interpretations of
“probability”, where the frequentist (Neyman 1977) and subjectivist interpre-
tation (De Finetti 1977) are the most popular ones. While frequentist probabil-
ity interpretes probability P (A) as relative frequency of event A when random
experiments have been realized infinitely times independetly of each other, the
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personal evaluation of probability by the observer is central in subjectivist in-
terpretation. As the frequentist interpretation addresses mainly randomness
and the subjectivist one concernes personal uncertainty, the latter case is of
special importance here so that within this chapter the term “classical proba-
bility” will be interpreted in this way. Determination of subjectivist probability
can be described as the consideration of the “betting odds”, which is calcu-
lated by the ratio of personal stake and profit in the context of a bet on the
occurrence of event A.
In the presence of ontologic uncertainty analysts often proceed by excluding
all values of variables that are in a coarse form and thus ontologic uncertainty
is ignored. By doing this, it is assumed implicitly that coarse data do not
reveal any information. But especially in the presence of ontologic uncertainty
coarse observations do contain information, because these coarse data reflect
the truth in the sense that there is no single true value. Additionaly coarse ob-
servations are informative, because knowing for instance that a person belongs
to category “A” or category “B” implies that this person does not belong to
category “C” in the case that three categories “A”, “B” and “C” basically can
be possible. Hence, involving coarsened observations that come from ontologic
uncertainty instead of ignoring them can improve results.
Therefore, the main goal of this chapter will be to show ways how analysis
changes in presence of ontologic uncertainty and to transfer already existing
foundations as random set theory and the Dempster-Shafer theory to the case
of ontologic categorical coarse data. Thereby, the second kind of uncertainty
(see Subsection 2.2.1) in the ontologic case is addressed exclusively, so that it
is not accounted for sampling variability.

3.1. Theory of random sets

Even if Kolmogorov [1933, p. 46] had introduced random sets indirectly by
regarding a “measurable region of the plane whose shape depends on chance”,
before the 1970s there was hardly taken note of random sets (Stoyan 1998,
Molchanov [2005]). Only when Matheron [1975] has defined the concept of ran-
dom closed sets and discovered some fundamental mathematical background,
more importance has been ascribed to random sets so that applications and
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extensions followed.
From then on random sets appeared in a variety of different fields of applica-
tion. Closely followed to the initial idea of Matheron [1975], random sets can
be helpful in the framework of geometrical statistics and image analysis. In
this field random sets form the centerpiece and are regarded as stochastic mod-
els of geometrical structure (Stoyan 1998, p. 2). But random sets are also used
in completely different areas as econometrics, where for example the demand
of sets of consumers is modeled by random sets (Stoyan 1998, p. 1). Even
within statistics the usage of random sets is varied so that random sets are
used within survey statistics to determine the sampling design (Nguyen 2007,
p. 137), set-valued stochastic processes can be understood as random sets and
there is application of random sets in the context of grouped, censored or gen-
erally coarsened data as well (Nguyen 2006, p. 24).
In this section I will especially concentrate on the latter application, namely
using random sets in the presence of coarse data (see Subsection 3.1.3). But
before I want to recall theory of random sets in Subsection 3.1.1 and Subsec-
tion 3.1.2 by addressing the mathematical background of random closed sets
in general as well as finite random sets. The special case of finite random
sets will be covered as well because of its particular interest in the context of
considering some ideas how the concept of random sets can be transferred to
the situation of categorical data under ontologic uncertainty.

3.1.1. Random closed sets

Random sets can be regarded as a generalization of the concept of random
variables. While random variables X can be described by a measurable map-
ping (e.g. X : ω → R) that assigns to every elementary element ω a single
value (e.g. arising from the real numbers R) which is equipped with a proper
σ-algebra (e.g. the Borel σ-algebra), in case of random sets to every elemen-
tary event of a field of probability a measurable region is assigned (Kolmogorov
1933, p. 46). Even if in the context of random variables measurability of the
corresponding mapping represents the essential requirement, in the framework
of random sets there has not been found a suitable σ-algebra if one concentrates
on all measurable bounded subsets of the given space. Instead Matheron [1975]
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as well as most of the researchers who addressed random sets after him based
their considerations on random closed sets, where in this case an appropriate
σ-algebra is the Borel σ-algebra that is consistent with the Hausdorff metric1

in the system K of all compact subsets ([Stoyan, 1998, p. 3]). Consequently
Matheron [1975] concluded the following definition of random closed sets:

Definition 3. A map X : Ω → F from a probability space (Ω, F, P ) to the
family F of closed subsets of locally compact seperable Hausdorff space E2 is
called a random closed set if {X ∩K 6= ∅} ∈ F for every K from the family K
of a compact subset of E.

Thus, the main idea of Matheron’s definition is not described by measures,
but by hit-or-miss events instead and hence F is sometimes called hit-or-
miss topology. The nature of this topology can be illustrated by means of an
example depicted in Figure 3.1.

In this example policemen are on search of drugs which are burried deeply
within the soil. For this purpose they are sending dogs within different areas
(marked by the rectangles). The dogs are able to detect the drugs and bark
everytime they are directly above the bag of drugs such that the policemen
can increase their evidence bit by bit. Hence, it is observable whether random
set X, namely the bag of drugs, hits or misses the selected testing sets K that
are the compact subsets within the whole space E in which the dogs are sent.
Having understood the contentual conception of this hit-or-miss topology, the
definition of the distribution of random sets, which is given by the probabilities
T(K)= P (X ∩K 6= ∅) with K ∈ K, can be easy comprehensible (Molchanov
2005, p. 3). This functional is called capacity functional of X and can be
characterized by the following three fundamental properties (Nguyen 2006,
p. 118, Nguyen [2007, p. 138]):

Definition 4. A set-function T : K → [0, 1] is called a capacity functional if
it satisfies:

1Matheron [1975]: Topology of space E is defined by a metric d : E ×
E → R+. Hausdorff metric ρ on K′ = K \ {∅} is defined as ρ(K,K ′) =
max{supx∈K d(x,K ′), supx′∈K′ d(x′,K)}

2Matheron [1975, p. 1]: each point in E admits a compact neighborhood, and the topology
of E admits a countable base
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Illustrating the hit-or-miss topology

Figure 3.1.: The hit-or-miss topology: Calculating the probability that there is a
non-empty intersection of testing set K (green rectangles) and random set X (dark-
green area, representing a drug bag) within space E (big bright green rectangle),
namely P (X ∩K 6= ∅) (illustration similar to that of Davidson et al. [1974, p. 324])

1. 0 ≤ T ≤ 1, T (∅) = 0.

2. T is alternating of infinite order.

3. T is upper semicontinous on K.

While the first postulation is equal to the foundation of probability theory
(compare to first axiom on page 69), the second one means that it has to be
satisfied for every Ki ∈ K (i = 1, 2, ..., n ≥ 2) that

T (∩kj=1) ≤
∑

∅6=I⊆{1,2,...,n}
(−1)|I|+1T (∪i∈IKi)

such that, for instance, in case of k = 2 one obtains

T (A ∩B) ≤ T (A) + T (B)− T (A ∪B).
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It is clearly evident that this requirement differs from the corresponding rule of
classical probability theory, namely the sieve formula of Poincaré and Sylvester
(see page 69, case b.), as here inequality instead of just equality is required.
Additionaly, one can conclude by the second requirement that the correspond-
ing functional T is monotone (Nguyen 2006, p. 40). The third requirement
means that if Kn ↘ K, then T (Kn) ↘ T (K) (Matheron 1975), which corre-
sponds to the continuity from above from classical probabiliy (see equation 69).
Moreover, under this definition of capacity functionals Choquet-Kendall-Ma-
theron theorem on F (Molchanov 2005) states that random closed set with
capacity functional T is unique. Thus, following Choquet-theorem (Nguyen
2007, p. 138) there exists uniquely a probability measure P on σ(F) such that
P (FK) = T (K) for all K ∈ K.
Further properties have been investigated as for instance stationarity of ran-
dom closed sets, i.e. invariance of its distribution in respect of translation in
the sense that

T (K) = T (K + h)

is satisfied for all K ∈ K and all h ∈ E (Stoyan 1998, p. 4).
But for the purpose of this thesis this basic foundation of random closed sets
is sufficient. For considering how coarse categorical data under ontologic un-
certainty could be modeled, it is more important to regard finite random sets
in more detail, which will be central in the next subsection.

3.1.2. Finite random sets

The framework of finite random sets simplifies some findings of the general
concept of random closed sets and thus can be regarded as an illustration of
some results already obtained in Subsection 3.1.1 (Nguyen [2006, p. 109]). As
in this subsection simply some definitions have to be applied in the special
case of finite spaces, in this context I want to give some further information,
namely recalling the distribution function of finite random sets additionally to
the capacity functional already defined in the previous subsection. Apart from
the capacity function, the distribution function of finite random sets will be
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important in the framework of deriving some concepts based on the analysis on
the power set in Subsection 3.1.3, 3.2.2 and Section 3.3. Because finite random
sets will be of peculiar interest with regard to dealing with coarse categorical
data under ontologic uncertainty (see Subsection 3.1.3), it is generally worth
to show some concepts for finite spaces in more detail as it will be done in the
following.
It is reasonable to recall the general definition of finite random sets first, where
Ω will denote a finite set from now on, P(Ω) its power set and (Ω,A, P ) the
corresponding proabability space (Nguyen 2006, p.37, adjusted notation):

Definition 5. A finite random set with values in P(Ω) is a map X : Ω→ P(Ω)
such that X−1({A}) = {ω ∈ Ω : X(ω) = A} ∈ A, for any A ⊆ Ω.

Even if finite random sets are characterized by a similar mapping, it is obvi-
ous that there are some differences compared to random closed sets that are
described in general definition 3. For characterizing the difference between the
underlying random sets of these two definitions, in my opinion two aspects are
of particular importance. While in the definition of finite random sets the cor-
responding mapping simply takes values within the power set P(Ω), definition
of random closed sets requires that mapped values come from the family F
of closed subsets of locally compact seperable Hausdorff space E. This point
can be caused by the fact that in the framework of general random closed
sets an infinitely uncountable power set would result, wherefore this simplified
definition 5 only can be applied for finite spaces. A second difference between
definition 3 and 5 can be decribed by the underlying point of view. While
in the context of random closed sets the idea of the hit-or-miss topology is
included into the definition, finite random sets are defined in a rather original
way by requesting measurability3 on X as in the definition of finite random
variables. Measurability is not sufficient in the framework of random closed
sets as here one has to involve further constrains as restriction to the space of
compact subsets.
As already mentioned finite random sets are not recalled in line with the hit-
or-miss topology and thus capacity functional will be explained later on and

3measurable mapping: (Ω1,F〉), i = 1, 2 are two measuring spaces. A mapping f : Ω1 → Ω2
is called F1 −F2-measurable, if f−1(F2) ⊂ F1 Meintrup and Schäffler [2007]
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first the distribution function on the power set F (A) will be defined (Nguyen
2006, p. 38, adjusted notation):

Definition 6. If F : P(Ω)→ [0, 1] is such that

1. F (∅) = 0, F (Ω) = 1

2. For any k ≥ 2, and A1, A2, ..., Ak subsets of Ω,
F (∪ki=1Aj) ≥

∑
∅6=I⊆{1,2,...,k}(−1)|I|+1F (∩i∈IAi).

then ∀A ⊆ Ω, F (A) = ∑
B⊆A f(B)

where f : P(Ω)→ [0, 1] is such that f(·) ≥ 0 and ∑B⊆Ω f(B) = 1.

A function F : P(Ω) → [0, 1] that satisfies these two requirements of defini-
tion 6 is called distribution function on the power set F (A) (Nguyen 2006,
p. 37) and can be calculated using probability densitiy function on the power
set f that satisfies properties that are commonly known from probability the-
ory, namely that f is non-negative and the sum of all possible densities, which
are here defined by the densities of all feasible subsets (B ⊆ Ω) (instead of
all feasible singletons), is equal to one. The calculation of the distribution
function on the power set F (A) as well as its underlying idea will be compre-
hensible in the context of the Dempster-Shafer theory in Subsection 3.2.
Comparing the conditions of definition 6 and the definition of the capacity
functional in the context of random closed sets (defintion 4), one notes that
the first ones are equal respectively. Because of the fact, that Ω denotes the fi-
nite set that contains all elements, F (Ω) has to attain the maximal value which
is 1 according to the first condition of defintion 6. Thus, one can conclude that
0 ≤ F (A) ≤ 1, so that both conditions are equal. While the third condition
of definition 4 is not needed for the finite case, the second conditions of those
two definitions differ in the sense that in definition 4 T has to be of infinite
alternating order and in definition 6 the so-called property of∞-monotonicity
has to be valid. Only if one restricts to nonempty finite random sets, which is
required by F (∅) = 0, 2-monotone distribution functions

F (A ∪B) ≥ F (A) + F (B)− F (A ∩B),
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i.e. ∞-monotonicity with k = 2 which is usually compatible with interval
probabilities, but with classical probabilities not, are also monotone in the
sense that (Nguyen 2006, p. 36)

A ⊆ B ⇒ F (A) ≤ F (B)

is valid.
Apart from distribution function, capacity functional can be defined for finite
random sets as well. But compared to the corresponding definition of random
closed sets, the third condition (continuity) does not have to be satisfied in
the context of finite random sets and thus one obtains the following defintion
for the capacity functional (Nguyen 2006, p. 40):

Definition 7. A set function T : P(Ω) → [0, 1] is a capacity functional of
some random set if it satisfies

1. T (∅) = 0, T (Ω) = 1

2. For any k ≥ 2, and A1, A2, ..., Ak in the power set,
T (∩ki=1Aj) ≤

∑
∅6=I⊆{1,2,...,k}(−1)|I|+1T (∪i∈IAi).

Capacity functionals represent the dual concept of distribution functions on
the power set F (A) and both concepts can be easily converted to each other
by

T (A) = 1− F (Ac).

Thus, the dual of ∞-monotonicity is the property of alternating of infinite
order of definition 4 or definition 7 respectively and T is monotone like F
(Nguyen 2006, p. 40).
The contentual differene between capacity functional and distribution func-
tion as well as their interpretation will be explained in the framework of the
Dempster-Shafer theory in Section 3.2, where these are called plausibility func-
tion and belief function respectively.
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3.1.3. Applying some ideas of finite random sets in the
context of coarse categorical data under ontologic
uncertainty

As already mentioned in the beginning of Section 3.1, grouped, censored or
generally coarse data represent a possible field of application of random sets.
Thus, there are already some first ideas how to use random sets in order to deal
with coarse data (Schreiber 2000, Nguyen 2006, p. 42-50, p.186-190, Nguyen
2012), for which a short overview with regard to the central idea is given
first. Nevertheless, these methods concern data under epistemic uncertainty,
wherefore some considerations concerning approaches that try to deal with
ontologic uncertainty by means of random sets will be made after that. As in
this thesis categorical data are of peculiar interest, whose power set in practice
mostly is of finite cardinality, thereby I will generally concentrate on finite
random sets.
In most of the approaches that deal with coarse data by means of random sets,
it is clearly evident that a situation of epistemic uncertainty is addressed. In
this way, these approaches focus on random variables W whose outcome Wj

(j = 1, 2, ..., n) is unobservable. Instead of observing this random variable,
the outcomes Xj (j = 1, ..., n) which are an iid sample of random set X are
observable. Moreover, it is assumed that the space that contains all possible
observations, namely the space of all nonempty subsets of the sample space
of ΩW (P(ΩW ) \ ∅), always covers the real outcomes. For instance, if {a, b}
has been observed first (such that X1={a, b}), either a or b represents the true
outcome (W1=a orW1 = b). In other words, random elementW has to belong
to random set X almost surely (with probability 1), wherefore in this case W
is called to be an almost sure selector of X (Nguyen 2006, p. 25). Keeping this
framework in mind, the goal of researchers who use random sets in the analysis
of coarse data consists of considering how to conclude some information from
these coarse observations and thus how to investigate the distribution of the
random set’s selector W (Schreiber 2000, p. 223).
In the course of this purpose Schreiber [2000, p. 223-p.227] as well as Nguyen
[2006, p. 42-48] try to restrict potentially qualified probability measures µ
on W . Thereby, Schreiber [2000] bases his considerations on the capacity
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functional and shrinks the space of possible probability spaces P by requiring
that all possible µ ∈ P are dominated by capacity functional T (µ 4 T ).
This means that a probability space has to exist that involves versions of the
random set X and a random variable W with distribution µ such that W is
an almost sure selector. This resulting class of probability measures is called
core (Schreiber 2000, p. 225):

core(T ) = {µ ∈ P |µ 4 T}.

Nguyen [2006] analogously focuses the core of the distribution function on the
power set F and further restricts it by showing that F is the lower envelope
of its core, which implies that (Nguyen 2006, p. 46)

F (A) = inf{π(A) : π ∈ core(F )},

where A is a subset of the finite space of W and π(A) its corresponding prob-
ability. Hence, F (A) can be regarded as a kind of lower bound for π(A).
Subsequently it is shown how by means of CAR assumption (see Section 2.1)
an unique CAR probability can be found.
As in the corresponding framework of these methods it is assumed that on
the one hand true values, namely the values of random variable W , are un-
derlying and on the other hand the chronology can be characterized by the
procedure that these true values of W is given first and after that coarsened
observation X are observed in a coarsened way, it is obvious that the case of
epistemic uncertainty is considered. By contrast, under ontologic uncertainty
coarse observations are not coarsened by a coarsening process, but coarse by
nature, such that there are no true values underlying and for instance the
coarse observed values Xj are induced by indecision. Therefore, the goal of
the described analysis of Schreiber [2000] and others, namely finding statistical
procedures for estimating the actual distribution of W , is improper in context
of ontologic uncertainty.
Because of the inappropriateness of these procedures for the case of ontologic
uncertainty, it is reasonable to make some considerations how one can represent
coarse categorical data under ontologic uncertainty by means of finite random
sets. Finite random sets are defined as measurable mappings X : Ω → P(Ω)
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(see definition 5) with values within the power set P(Ω). Furthermore, in this
context F and T are defined as functions on the power set in the sense that
F : P(Ω)→ [0, 1] and T : P(Ω)→ [0, 1]. This random set based idea of focus-
ing on the whole power set instead of single elements as in classical probability
theory could be useful in presence of ontologic uncertainty, because here apart
form precise observations as {a} also set-valued coarse observations as {a, b}
are available which represent an element of the power set. Because of the ab-
sence of a true underlying value in case of observing coarse observations and
the fact that these observations are coarse by nature, this realizations can be
considered as own possible observations.
This thought and its consequences in context of foundations of classical prob-
ability theory shall be illustrated by an example, which contrasts classical
probability theory (case 1) and ideas that include ontologic uncertainty (case
2). I want to emphasize that this example only raises some elected aspects
of probability theory, where some further aspects will be addressed later on
in Subsection 3.2.2 and conclusions will be summarized in Section 3.3. All
commonly used notations, as for instance Ω for the sample space and ω for
its elements, are equipped with a star in the presence of ontologic uncertainty.
The star ? is generally used in this thesis in order to mark the notations which
are suggested for representing ontologic uncertainty.

Example 3
Case 1: Exclusive availability of precise possibilities of answer:
Ω={a, b, c}, event of interest: A = {a, b}
Case 2: Availability of precise and coarse possibilities of answer:
Ω?=P(Ω) \ ∅={{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
event of interest: A? = {ω?|no singleton}

By means of this example I go into the difference between case 1 and case 2
with regard to the definition of probability and basic probability calculation
for the easy case of imposing the assumption that every outcome is equally
probable with the result that Laplace probabilities are applicable. Please note
that this assumption is quite strong and that there are many cases in which it
is not justified. Nevertheless, for the purpose of illustration it is appropriate
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to impose this assumption and it will be obvious that general calculations can
be realized analogously.
In classical probability theory (case 1) probability is defined as in definition 2,
where a usually used σ-algebra is represented by the power set of Ω, which
assignes to every event its underlying probability, such that

P : P(Ω) → R

A → P (A).

Refering this equation to the example and implying that every outcome is
equally probable, probability P (A) can be calculated by Laplace P (A) = |A|

|Ω| =
2
3 so that a probability of 2

3 can be assigned to event A.
Extending this classical definition to the case of the availability of some coarse
categorical data as well (case 2), sample space Ω changes to Ω?=P(Ω)\∅. The
empty set is excluded in order to ensure desirable properties as monotonicity as
already mentioned in the context of finite random sets (see Subsection 3.1.2).
In practice this means that every respondent has answered this question and
reports at least one of the possible categories. Because of the fact that in case
of implying ontologic uncertainty the outcomes within the sample space do not
have to be singletons, the mapping that defines probability P ? is characterized
as

P ? : P(Ω?) = P(P(Ω) \ ∅) → R

A? → P ?(A?).

Requiring again the applicability of Laplace probability, P (A?) = 4
7 can be

assigned to event A?, so that respondents are indecisive between at least two
answers with this probability. Apart from the fact that the classical sample
space is replaced by its power set without the empty set in order to be able
to include coarse observations and thus probability is no longer described as
a mapping from the power set of Ω, but from the power set of the power set
of Ω without the empty set, no big changes compared to classical probability
theory seem to result. As the conception of ontologic uncertainty implies that
coarse observations can be interpreted as own outcomes, this extention can
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be solely characterised by an alternative sample space Ω? (instead of Ω), such
that this result is not suprising. Therefore, interpretation and properties of P ?

can be compared to that of P with the only difference that the former relys
on Ω? and the latter on Ω.
In this subsection only first considerations concerning a possibility to incor-
porate ontologic uncertainty have been made. It has been derived from the
basic idea of random sets that a probability definition on the power set P ? :
P(Ω?) → R could be appropriate in the presence of coarse categorical data
under ontologic uncertainty. As under ontologic uncertainty coarse data rep-
resent the truth, it has been concluded that every element of the corresponding
power set without the empty set forms an own category so that Ω?=P(Ω) \ ∅.
P ? will be the only notion of the ?-framework that can be interpreted in terms
of probabilities. Results that will be derived from the Dempster-Shafer theory
concern conceptions that rely on evidences and beliefs instead and will be used
in order to make predicitons that involve ontologic uncertainty.
Even if the distribution function does not play an important role in presence
of categorical data because of the underlying nominal scale of measurement,
it will be shown that the distribution function on the power set as well as the
capacity functional can be interesting for including ontologic uncertainty into
results when decision has already been made. As the interpretation of these
functions and their difference will be more comprehensible in context of the
Dempster-Shafer theory, it will be addressed in Subsection 3.2.2. Before it is
reasonable to give summary of the basic idea of the Dempster-Shafer theory.

3.2. The Dempster-Shafer theory

Although 1665 already Leibniz suggested a numerical assignment on the scale
of [0, 1] in order to formalize the “degrees of proof” and Bernoulli [1713] thought
about pure and mixed evidence, Shafer [1976] who relies on Dempster’s idea
of lower and upper probabilities (Dempster, A. 1967) and thus the so-called
Dempster-Shafer theory (DST) gave rise to more analysis of beliefs (Fine 1977).
Generally, there are different points of view how one can consider DST, as one
can either interprete it in relation to probability theory or regard it as an
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autonomous theory. This distinction is of particular importance, if the com-
bination rule is applied as here one has to decide if impossible events (i.e. the
empty set) shall be excluded or not. As this rule of combination will not be of
peculiar interest here, it will be briefly illustrated only and thus this differen-
tiation is not very important. Nevertheless, DST will be regarded rather as an
autonomous approach, as it can be noted from the exlusion of the empty set
within the ?-notation, but at some points comparisons to probability theory
will be drawn in order to get a better understanding of the underlying nota-
tions with regard to their generality.
Even if some mathematical foundations of the DST overlap with the theory of
random sets (see Section 3.1), as the definition of capacity functionals, which
are called “plausibility function” in terms of DST, and the distribution func-
tions on the power set, for which the notion “belief function” is used, show, in
this section foundations of DST will be presented mostly without mentioning
any relations to random sets. Instead, the basic goal will be to conclude some
further ideas from DST for dealing with coarse categorical data under onto-
logic uncertainty.
For this purpose, some general aspects of DST will be presented in Subsec-
tion 3.2.1, where especially the basic conception and their underlying interpre-
tiation of essential notions as “belief functions” and “plausibility functions” will
be addressed. Keeping foundations of DST in mind and considering how one
could deal with coarse categorical data under ontologic uncertainty, findings
of Subsection 3.1.3 that concerned this kind of uncertainty by applying some
results of random set theory will be extended in Subsection 3.2.2. Thereby, a
generalized framework of probability will be recalled and it will be explained
how intervals can be constructed that are able to represent ontologic uncer-
tainty.

3.2.1. Foundations of Dempster-Shafer theory

First some basic terms and conceptions will be illustrated by means of an
example that is similar to that of Zadeh [1986].

Example 4 Six persons, who are not sure about their exact
weight, report it in terms of an interval (see Table 3.1). More-
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over, it is assumed that there are no effects of social desirability so
that the true weight is within the interval indeed. The fraction of
respondents whose weight is within the query set Q = [75, 80] will
be of interest.

person no. 1 2 3 4 5 6
weight wi [in kg] [55, 57] [56, 61] [75, 82] [78, 80] [77, 81] [98, 101]

Table 3.1.: Explaining baisc terms of DST by means of Example 4.

As there are some answers that overlap with the query set, but are not defi-
nitely within the query set, it is difficult to determine the required fraction, if
there is no rule available. DST provides two notions that can help to find a
satisfying answer in questions of that kind.

1. Measure of belief includes all weights wi that are fully contained within
the query set (i.e. wi ⊆ Q).

2. Measure of plausibility involves all weights wi that intersect the query
set Q (i.e. wi ∩Q 6= ∅).

Thus, referred to the example the fraction of respondents whose weight is
within the query set is equal to 1

6 using the measure of belief as only [78, 80]
is covered completely by the query set. Since the answers [75, 82], [78, 80] and
[77, 81] exhibit some values that coincide with the values of the query set,
a fraction of 1

2 results when applying the measure of plausibility. In order to
express these results in words, one can state that the fraction is certainly 1

6 and
possibly 1

2 and thus the answer can be represented as an interval whose lower
bound is described by the measure of belief and the measure of plausibility
forms its upper bound.
Having gained an insight into the contentual idea of the measure of belief as
well as the measure of plausibility which both play an important part in the
framework of DST, it is reasonable to proceed with more formal definitions.
For this purpose, the following notion of the basic probability assignement is of
particular significance, because it can be regarded as a building block for the
construction of the belief function as well as the plausibility function (Beynon
et al. 2000, p. 40):
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Definition 8. A basic probability assignement is a function m : P(Ω)→ [0, 1]
such that: m(∅) = 0 and ∑A⊆Ω m(A) = 1.

It is important that one distinguishes between probabilities that evaluate how
probable events occur and those masses m(A) that concern the confidence that
can be exactly commited to A.
Using the basic probability assignement belief function as well as plausibility
function can be defined as follows (Shafer 1976):

Definition 9. A function Bel : P(Ω)→ [0, 1]
with Bel(Ω) = 1, Bel(∅) = 0 that is ∞-monotone is called belief function and
can be calculated by Bel(Q) = ∑

A⊆Qm(A).

A function Pl : P(Ω)→ [0, 1]
with Pl(Ω) = 1, Pl(∅) = 0 that is alternating of infinite order is called plausi-
bility function and can be calculated by Pl(Q) = ∑

A∩Q6=∅m(A).

Consequently the belief function is the sum of the masses of all subsets that
imply the query set Q (hypothesis) and in accordance with the illustrating
example 4 can be interpreted as a lower bound for the confidence of a hy-
pothesis. By contrast, plausibility forms an upper bound by accounting for all
sets that could possibly support hypothesis Q in the sense that the hypothesis
and the subsets of the frame of discernment only have to intersect in order to
be included. Therefore, plausibility expresses the extent to which one fails to
disbelieve hypothesis Q (Beynon et al. 2000, p. 40)
Concerning the mentioned conditions within definition 9 it follows that both
functions range from 0 to 1, where Bel(Q) and Pl(Q) are zero in case of the
query set Q being the empty set and the maximal value of one is attained if
Q is equal to Ω. For understanding the additional requirements, namely that
Bel(Q) is ∞-monotone and Pl(Q) is an alternating of infinite order (Wu and
Mi 2008, p. 77), I refer to Section 3.1 where these properties have proposed
in the framework of capacity functionals as well as distribution on the power
set. Having proposed the measure of belief and the measure of plausibility as
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lower and upper bound respectively, it is obvious that Bel(Q) ≤ Pl(Q).
Both functions can be converted into each other by (Beynon et al. 2000, p. 40)

Pl(Q) = 1−Bel(Qc),

where Qc is the complement of set Q.
Even if the foundations of the conceptions belief and plausibility are more
important here, the second aspect of DST, namely the rule of combination
that prescribes how evidence from two or more independent sources can be
combined as well as the associated problem of normalization, will be shortly
addressed for the sake of completeness.
Generally combined beliefs or plausibilities can be calculated by the original
way (see definition 9), but the rule of combination has to be used for the
involved basic probability assignements m1 (of first source) and m2 (of second
source) (Beynon et al. 2000, p. 41):

[m1 ⊗m2] (Q) =


0, if Q = ∅∑

A∩B=Qm1(A)·m2(B)
1−
∑

A∩B=∅m1(A)·m2(B) , if Q 6= ∅
. (3.1)

For illustration of this rule, example 5 might be helpful.

Example 5 The goal is to find out who had filled the role of
Santa Claus this year. Child 1 (C1) guesses that Santa Claus is
played by his uncle (U), where child 2 (C2) guesses that her father
(F ) is Santa Claus. The credibilities of both children are 0.6 and
0.7 respectively. Both children are brother and sisters so that they
cannot be right at the same time.

C2 credible (0.7) C2 not credible (0.3)
C1 credible (0.6) impossible! 0.56 U is Santa: 0.18
C1 not credible (0.4) F is Santa: 0.28 uncertain Santa: 0.12

Table 3.2.: Explaining combination rule of DST by means of Example 5.

Table 3.2 shows that the combination of these two independent sources (C1 and
C2) follows by calculating the product of corresponding evidences, which equals
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the numerator of equation (3.1). Because of the possibility of non-combinable
events, the resulting product has to be normalized by involving those cases
only that do not lead to this conflict. This normalization is realized by the
denominator of equation (3.1). Thus, in this example one obtains combined
mass probability assignement according to equation (3.1), so that

[m1 ⊗m2](U) = 0.6 · 0.3
1− 0.56 ≈ 0.41.

Because of the involved normalization, this rule of combination can lead to
counterintuitive conclusions (Zadeh 1984, p. 82) in case that DST is consid-
ered with regard to probability theory. If for instance, C1 is 98 percent sure
that person A has played Santa Claus and 2 percent sure that it has been
real Santa Claus R, while C2 is 99 percent sure that Santa has been played by
person B and 1 percent sure that real Santa Claus R has been there, then rule
of combination would conclude that Bel(R) = 1 even if both children were
highly unlikely that it has been real Santa Claus (normalization excludes all
other cases as they lead to empty sets). Other examples that show counterin-
tuitive results can be easily constructed by applying this rule of combination
(see for instance Zadeh [1986, p. 89]). Otherwise, if DST is regarded as au-
tonomous theory as here, one is not concerned with counterintuitive results, as
in this case interpretations do not have to be made in terms of probabilities,
but terms as “confidence” or “belief” instead.

3.2.2. The Dempster-Shafer theory as an instrument in
order to include ontologic uncertainty

After having acquired some knowledge of DST, ideas concerning tools that are
able to deal with ontologic uncertainty can be derived. In Subsection 3.1.3
some first considerations of that kind have been made by involving aspects of
random set theory. At this point two findings have been noted: Firstly, in-
stead of regarding all elements of the sample space Ω, focusing on the power set
(Ω? = P(Ω)\∅) should be preferred as coarse data under ontologic uncertainty
already represent the truth and thus secondly probability on the power set of
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the power set without the empty set P ? : P(Ω?)→ R seemed to be a suitable
way in order to represent ontologic uncertainty. Thus, no change apart from
an enlargement of the sample space has been resulted if one includes coarse
data under ontologic uncertainty.
In this section considerations will rely on the central idea of using the power
space of Ω without the empty set as new sample space Ω? again, but at this
point mainly distribution functions of this probability theory on the power set
will be addressed. In this thesis the categorical case will be of special inter-
est, so that distribution functions do not play an important role at the first
glance. But as summation of several basic probability assignements m(A) that
support hypothesis of interest Q (either by using certain sets only (A ⊆ Q →
belief function) or possible sets as well (A ∩ Q 6= ∅ → plausibility function))
can be regarded as general distribution functions, distribution functions on
the power set are an important tool even in the presence of categorical data.
The mentioned fact that these distribution functions on the power set can be
regarded as generalization of classical distribution function will be explained
in this section.
The class of all possible distribution functions on the power set will be de-
noted by Π? and its elements by F ?, while distribution function from classical
probability theory will be labeled by F . As by DST the interpretation of
special distribution functions on the power set F ?, namely the belief function
Bel(A) as well as the plausibility function Pl(A), is easily comprehensible,
some contentual aspects can be derived for dealing with data under ontologic
uncertainty. Please note, that findings from random set theory that have been
presented in Subsection 3.1.3 and conclusions from DST that will be drawn
here, pursue completely different goals. While the former results rather con-
cern the general framework of probability theory and basic idea concerning
dealing with ontologic uncertainty, derivations of the latter concentrate on
prediction after a decision has been made and data are not coarse anymore so
that it does not directly attend to ontologic uncertainty itself. This will be
emphasized in Section 3.3 as well, where both approaches that involve analysis
on the power set without the empty set will be summarised.
In this section first I will specify the relation between notions from classical
probability theory and probability distributions on the power set F ? in more
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detail, so that one can gain a better understanding about the latter one and
embed it into usual foundations. After that further thoughts are given to the
way how prediction could be made after one has come to a decision that in-
corporates ontologic uncertainty.
DST exhibits distribution functions on the power set, namely the belief func-
tion Bel : P(Ω)→ [0, 1] as well as the plausibility function Pl : P(Ω)→ [0, 1].
These two functions come from a family of possible distributions on the power
set Π?, where belief function and plausibility function mark the range of pos-
sible probability distributions F ? ∈ Π? in the sense that (Beierle and Kern-
Isberner 2005, adjusted notion)

Bel(A) = inf{F ?(A)|F ? ∈ Π?}

Pl(A) = sup{F ?(A)|F ? ∈ Π?},

so that Bel(A) and Pl(A) represent lower and upper bound (Zadeh 1986, p. 86)
respectively as already mentioned in Subsection 3.2.1.
Lack of knowledge concerning underlying probabilities is expressed by this
range between Bel(A) and Pl(A) and thus total knowledge is available in
case of both functions being equal (Beynon et al. 2000, p. 41). Under this
condition classical probability theory and probabilities from DST F ? coincide.
Thus, the larger the difference between belief and plausibility, the more one
removes oneself from classical probability theory in the sense that uncertainty
is involved by means of admitting a range of possible distribution functions
limited by the belief and the plausibility function. In this way distribution
functions on the power set from DST extend notions from classical probability
theory in the sense that the lack of knowledge can be specified instead of
simply assuming that there is total knowledge about probabilities available
(Bellenger and Gatepaille 2011). On the one hand in the case that probabilities
are available indeed, analyses of classical probability theory generally leads to
more precise results (Kohlas and Monney 1995, p. 8). But on the other hand by
using notions of DST one can avoid the problem that sometimes one does not
have any information about underlying probabilities so that no assumptions
that potentially are not justified need to be imposed (Beynon et al. 2000,
p. 39). Moreover, one can regard the rule of combination in context of DST
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(see Equation 3.1) as generalization of Bayes’ rule P (A|B) = P (A∩B)
P (B) (Dempster

2008, p. 5) that concernes the calculation of conditional probabilities, as the
intersection of the numerator reflects the product of (independent) sources and
the denominator represents a normalization.
These first arguments for the fact that classical probabilities can be regarded
as a special case of the more general notions from DST that rely on the power
set shall be further extended by comparing some more methods and properties
of those two conceptions hereafter.
Therefore, the following three selected properties of classical probability theory

1. P (∅) = 0, P (Ω) = 1

(see first and second equation on Page 69

2. P (A) = 1− P (Ac)

(see on Page 69, case a.)

3. P (∪ni=1Ai) =
n∑
i=1

(−1)i+1 ∑
i≤j1<...<ji≤n

P (∩ik=1Ajk)

(see on Page 69, case b., sieve formula)

that have already been presented as axioms of Kolmogorov or rules for cal-
culation in the beginning of this chapter on Page 69 shall be compared with
properties for distribution functions on the power set.
Belief function as well as plausibility function represent elements of the family
of possible distributions on the power set Π? by forming the limits of imag-
inable distributions F ? (compare equation (3.2)). Thus, properties that have
to be valid for belief function and plausibility function are properties that are
valid for all elements within Π? and thus for all distributions on the power set.
Hence, one can compare properties of belief function and plausibility function
which have been presented in Subsection 3.2.1 with properties for classical
probability theory of equation (3.2).
While the first property of equation (3.2) has to be satisfied for F ? as well (see
definition 9), the second property is not generally satisfied for F ?, which shall
be illustrated by means of a narrowly mixed example 5.
Uncle U , father F and real Santa Claus R are potential candidates for the role
of Santa Claus, so that Ω = {U, F,R} is given. C1 is 90 percent sure that
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3.2. The Dempster-Shafer theory

Santa Claus has been played by U or R, such that basic probability assigne-
ment of 0.9 is given to the set {U,R}, i.e. m({U,R}) = 0.9. Since there is
no knowledge about the remaining probability, it is assigned to whole Ω, i.e.
m({U, F,R}). Against this, in context of classical probability theory, proba-
bility of 0.9 would not describe the certainty of C1’s statement, but one would
assume that C1 has total knowlede and thus probability P ({U,R} = 0.9 would
be used. Moreover, in this case the remaining probability of 0.1 would be allo-
cated to the complement of set {U,R}, i.e. P ({F} = 0.1, as there is no lack of
knowledge included. As the components of F ?, namely basic probability mass
assignements, do not satisfy property two of equation (3.2), generally one has
to conclude that

F ?(A) 6= 1− F ?(Ac).

The third property of equation (3.2) is not generally valid as well, because for
the belief function∞-monotonicity defined in equation (6) is required and the
plausibility function is alternating of infinite order (see (4)), which both do not
exclusively allow for equality as in equation (3.2), but also admitt inequality.
Thus, comparison according to these three properties has been shown that
distributions on the power set F ? can be regarded as a more general concept,
where notions from classical probability theory represent a special case, namely
the case without lack of knowledge.
Moreover, the general nature of analysis on the power set compared to classical
probability theory can be shown by the fact that the former addresses prob-
abilities of events composed of singletons, where the latter concernes events
that consist of elements on the power set, so that probabilities of several multi-
valued sets can be calculated. This has been illustrated in the framework of
random sets in Subsection 3.1.3, where for instance P (A?: no singleton) has
been calculated, i.e. the probability that a person is indecisive between several
answers.
Now, after the general nature of distributions on the power set F ? has been
described by comparing these notions with those of classical probability the-
ory, considerations will be made how this kind of uncertainty can be involved
into results of prediction and how these distributions on the power set could be
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3. Ontologic uncertainty

used as instruments in order to represent the extent of ontologic uncertainty.
In the framework of prediction of the confidence of a certain question set Q?

when a decision has been made, belief functions as well as plausibility function
represent important parts as they form lower and upper bound respectively,
so that

F ?(Q?) = [Bel(Q?), P l(Q?)].

The representation of the confidence in terms of an interval from equation (3.2)
allows to make a prediction without imposing further assumptions and includes
total ontologic uncertainty. The reason for taking Bel(A) and Pl(Q) as in-
terval limits can be comprehensible by means of initial Example 4, where this
framework of predicition will be illustrated in Section 3.3, where all important
notions will be summarized and explained within a detailed example. As the
difference between the values of the belief function and the plausibility function
represents the lack of knowledge, it is obvious that the length of this interval
can be interpreted as the extent of underlying ontologic uncertainty.
Conclusion from random set theory made in Subsection 3.1.3 as well as these
deductions from DST, will be summarised in the next section.

3.3. Analysis on the power set in case of coarse
categorical data under ontologic uncertainty

Some considerations regarding the presence of coarse categorical data under
ontologic uncertainty have been made in the course of this section, whereby
ideas and notions from random set theory as well as DST have been applied
in this context. The notions used in random set theory as well as in DST
are quite similar. Dual conceptions like distribution on the power set as well
as capacity functional in the framework of random sets are reflected by be-
lief functions and plausibility functions respectively in context of DST as all
notions are distributions P(Ω) → [0, 1] and show same properties and way of
calculations respectively (compare definition 6 and 7 to definition 9).
Nevertheless, both areas impress with different aspects. While random set the-
ory exhibits a well-elaborated mathematical foundation, in many cases DST
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proceeds in a more practical way and interpretations of the basic notions are
central. Therefore, different conclusions concerning the dealing of coarse cat-
egorical data under ontologic uncertainty have been made from these two ap-
proaches. Thereby deductions from random sets concentrated on the basic
dealing with data of that kind, so that the idea of regarding probabilities on
the power set of the sample space has been derived. Against this conclusions
from DST focused on the situation when there is no ontologic uncertainty
anymore, because decisions have been made, and thus one wishes to report
results about probabilities of singletons, or at least more precise sets, without
making any assumptions. Both approaches, random set theory as well as DST,
provided some concepts that can be used to introduce a notion for a power
set based theory that is applicable in the framework of coarse categorical data
under ontologic uncertainty. All components that belong to this theory have
been marked with a star in the previous subsections. Basic findings concerning
dealing with coarse categorical data under ontologic uncertainty are summa-
rized in Figure 3.2. Thereby, the first part of this box that concernes the
general idea of analysis has been derived from random set theory, whereas the
second part which addresses prediction of the confidence of particular ques-
tionary sets Q?, has been concluded from DST.
In order to illustrate conclusively the role of the most important ?-notation in-
struments within an analysis in the framework of ontologic uncertainty, namely
P ?(A?), m?(A?) as well as F ?(Q?), the following example might be helpful.

Example 6 For reasons of simplicity there are only three parties,
namely A, B, and C that can be elected. Before election day some
respondents are indecisive between several parties.

The example faces a situation of coarse categorical data, whereby ontologic
uncertainty is present, because coarse observations are coarse by nature so
that it is no single true value available as the corresponding respondent is
indecisive. The framework by means of the ?-notation suggests an analysis on
the power set of Ω = {A,B,C} without the empty set, namely

Ω? = {{A}, {B}, {C}, {A,B}, {A,C}, {A,B}, {A,B,C}},
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and regarding every element within Ω? as own outcome that could be possible.
In this way the sample space simply has been extended by involving coarse
data. Thus, probabilities of events that are composed by sets easily can be
calculated, as for instance probability of event E? :“Being indecisive between at
least two parties” (P ?(E?)) can be calculated as adding up the corresponding
probabilities, so that

P ?(E?) = P ?({A,B}) + P ?({A,C}) + P ?({A,B,C}).

As coarse observations can be treated as typical outcomes, probabilities P ?(E?)
with E? ∈ P(Ω?) can be regarded as classical probabilities as there are no dif-
ferences between classical probabilities P and P ? except of the modified sample
space.
Against this, basic conceptions and properties are more general than those of
classical probability theory when decisions have been made and one is inter-
ested in the confidence for a special query set Q? as for instance Q? = {B,C}.
The generality results from the fact that uncertainty about probabilities can
be included compared to classical probability theory. As the case of categorical
data is faced, distribution functions F ?(Q?) do not pursue the main goal of
classical probability theory, namely the calculation of probabilities P (X ≤ x),
but are needed to add up several evidences m(A?) with A? ⊆ Q? of different
sets of categorical data and to predict the confidence of a special query set Q?

in this way. Even if the basic structure of F ?(Q?) equals the one of distribution
function of classical probability theory, underlying properties are more general
as explained in Subsection 3.2.2 and distribution function from classical proba-
bility theory can be regarded as a special case of F ?(Q?). As F ?(Q?) is able to
incorporate ontologic uncertainty, it is an element of all distribution functions
on the power set Π?, where lower and upper bound are defined by F ?(Q?) and
F ?(Q?), whereby in case of Q? = {B,C} they can be calculated by

F ?({B,C}) = m({B}) +m({C}) +m({B,C})

F ?({B,C}) = m({B}) +m({C}) +m({A,B})

+ m({A,C}+m({B,C})

+ m({A,B,C}).
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Thus, the confidence of query set Q? = {B,C} can be predicted in terms of
interval

F ?({B,C}) = [F ?({B,C}), F ?({B,C})]

and the length of this interval represents the extent of ontologic uncertainty.
Furthermore, a relation between this theory based on the power set and clas-
sical probability theory has been established. It has been shown that classical
probability theory can be regarded as a special case of the power set based
theory, as several methods and properties are generalized in the latter one.
Both theories coincide in the case that total knwoledge about the underlying
probabilities is available. This relation can also be noted by means of Table 3.3
that compares both conceptions with regard to different aspects.
Random set theory as well as DST are not the only areas that are based on
distribution functions on the power set, as for instance the theory of hints as
well as the as transferable belief model represent similar approaches. While
the transferable belief model provides a framework for considering quantified
beliefs that differs from DST according to a few aspects as for instance by
distinguishing between the credal and the pignistic level, the theory of hints
develops DST as a theory with uncertain arguments. In my opinion in par-
ticular it could be worth to look closely at the theory of hints and extend the
proposed ?-notion by some underlying ideas. For more details concerning the
transferable belief modell and theory of hints see Smets and Kennes [1994] and
Kohlas and Monney [1995], respectively.
In summary, some approaches for dealing with epistemic and ontologic uncer-
tainty have been explained in Chapter 2 and this chapter by presenting some
already used methods of other areas first and applying them in the framework
of the corresponding uncertainty in a second step.
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Classical Probabilities Probabilities on P(Ω)
Sample space Ω = {ω1, ...ωn} Ω? = P(Ω) \ ∅

contains outcomes that contains all subsets of Ω without ∅
are singletons → coarse data can

be represented as well
Probability P : P(Ω)→ [0, 1] P ? : P(Ω?) = P(P(Ω))→ [0, 1]

A→ P (A) A? → P ?(A?)
where A ⊆ Ω where A? ⊆ Ω?

Probability p : Ω→ [0, 1] m : P(Ω)→ [0, 1]
function with p(∅) = 0 with m(∅) = 0

and ∑ω∈Ω p(ω) = 1 and ∑A⊆Ω m(A) = 1
where p(ω) indicates .... where m(A) reflects the

confidence of statement A
Distribution F : Ω→ [0, 1] F ? : P(Ω) = Ω? → [0, 1]
function not important in case in order to add up

of categorical data masses of several sets according
to criterion of interest
(e.g. A ⊆ Q or A ∩Q 6= ∅)

P (∅) = 0 F (∅) = 0
Fundamental P (Ω) = 1 F (Ω) = 1
properties P (A) = 1− P (Ac) F ?(A) 6= 1− F ?(Ac)

if not A then Ac no knowledge about remaining
(total knowledge) probability of Ac
sieve formula of F ?(A ∪B) ≥ F (A) + F (B)− F (A ∩B)
Poincaré and Sylvester F ?(A ∪B) ≤ F (A) + F (B)− F (A ∩B)

Conditioning Bayes’ rule Rule of combination
of DST

Both cases ...there is no lack of knowledge about probabilities
coincide ⇒ Ω? = Ω contains singletons only
if... ⇒ F(A)=Pl(A)=Bel(A)

⇒ all properties of classical probability theory are valid

Table 3.3.: Comparison of classical probability theory and probabilities on the
power set.

96



3.3. Analysis on the power set

Analysis of coarse categorical data under ontologic uncertainty

Let X be a categorical random variable and Ω = {A,B,C, ...} its sample
space.
Moreover, let X? be a random variable that attains coarse values as well
⇒ Ω? = {{A}, {B}, {C}, {A,B}, {A,C}, {A,B,C}, ...}=P(Ω) \ ∅.
The star ? marks analysis in the framework of ontologic uncertainty.

General Analysis by means of P ?:
As coarse observations can be regarded as own outcomes in the presence
of ontologic uncertainty, analysis on the power set is applicable.
Probabilities P ?(A?) on Ω? for A? ⊆ Ω?:

P ? : Ω? → [0, 1]
A? → P ?(A?),

where P ?(∅) = 0 and ∑A?⊆Ω? P
?(A?) = 1.

Prediction of F (Q?) without additional assumptions:
Confidence of a certain questionary set Q? shall be predicted by means
of F ?(Q?) ∈ Π?, where Π? is the family of distributions on the power
set. Calculation by adding up basic probability mass assignement
m : P(Ω) → [0, 1] with m(∅) = 0 and ∑

A⊆Ω m(A) = 1, where m(A)
reflects the confidence that exactly can be committed to A.

F ? : Ω? → [0, 1]
F ?(Q?)? =

∑
A⊆Q

m(A) = inf{F ?(A?)|F ? ∈ Π?}

F ?(Q?) =
∑

A∩Q 6=∅
m(A) = sup{F ?(A?)|F ? ∈ Π?}

⇒ F ?(Q?) = [F ?(Q?), F ?(Q?)]

where the length of the interval indicates the extent of ontologic uncer-
tainty.

Figure 3.2.: Summary of the conceptions concerning the ?-notation
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4. A multionomial logit model
based approach under epistemic
uncertainty

After having addressed some general approaches for the analysis of coarse data
until now, in Chapter 4 and Chapter 5 it will be analysed how one can account
for epistemic and ontologic uncertainty within the dependent categorical vari-
able of a regression model. Thereby, the proceeding will be structured in the
way that this chapter will concentrate on some general information concerning
the basic model and its extension in case of epistemic uncertainty, whereas
Chapter 5 will investigate how to include ontologic uncertainty.
In this chapter some general considerations concerning the basic model will be
made first. In the situation of a categorical response variable a multinomial
logit model is appropriate, whose foundations will be explained and whose
applicability will be shortly discussed for the case which is addressed here.
Afterwards this basic model will be extended by accounting for epistemic un-
certainty. For this purpose some comments on the data generating process
in the presence of epistemic uncertainty will be made first. Subsequently, it
will be considered how this epistemic uncertainty can be incorporated into a
multinomial logit model, where the model without covariates will represent
the starting point (model 1), which will be extended by including two covari-
ates (model 2) in a second step. In this context it will not only be explained
how the likelihoods can be derived for model 1 and 2 respectively, but also the
problem of identifiability as well as possible solutions by assumptions like CAR
or by partial identification will be investigated. Furthermore, an alternative
imputation based approach will be sketched.
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4.1. Multinomial logit model in the precise case

As considerations concerning extensions of the multinomial logit model will be
made, it is reasonable to summarize the basic idea and formal notation of the
classical multinomial logit model that concernes the precise case first. In this
connection I want to justify why the multinomial logit model is appropriate
for the purpose that is pursued here as well as show the limits that result by
using this model. In this section it is mainly referred to Fahrmeir et al. [2007,
p. 238-241].
The multinomial logit model is generally used if the dependent variable Y
represents a characteristic that is of nominal scale, which means that the cate-
gories of Y either can not be ordered or at least that the underlying order has
no relevance. Thus, as for instance familiy status or political party preference
show categorical charactericstics that are of nominal scale, possible fields of
application for the multinomial logit model are survey statistics or psephology.
As coarsening of the dependent variable will be of peculiar interest as described
in the introduction to this chapter and generally categorical data are focused
in this thesis, the multinomial logit model is suitable. Nevertheless, the fact
that the multinomial logit model requires response variables that are of nomi-
nal scale shows the limit of the analysis by means of this model as at this point
categories that imply an order can not be analysed. But in order to maintain
a clear scope of this thesis, only the multinomial logit model and thus only
coarsened categorical dependent variables of nominal scale will be addressed.
In the following the underlying category is denoted by r and there are c cat-
egories such that Yi ∈ {1, ..., c}. The probability of occurrence for category
r = 1, ..., c− 1 for given covariates xi is determined by

P (Yi = r|xi) = πir = exp(xTi βr)
1 +∑c−1

s=1 exp(xTi βs)
. (4.1)

As all probabilities add up to one, the corresponding probability for reference
category c can be calculated by

P (Yi = c|xi) = πic = 1− πi1 − ...− πic−1 = 1
1 +∑c−1

s=1 exp(xTi βs)
.
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This procedure corresponds to involving the constraint that the beta coefficient
of the last category is zero, i.e. βTc = (0, ..., 0), because exp(xTβc) = exp(0) =
1. In order to ensure identifiability, in the basic model it is important to
involve a constraint of that kind. Alternatively one can choose any other
category as reference category or choose a symmetric type of constraint by
requesting that the sum of all category specific coefficients βs amounts to
zero, i.e. ∑c

s=1 β
T
s = (0, ..., 0)T , where the underlying parameters have to be

interpreted as deviation from the mean response (Tutz [2000, p. 163-164]).
Solving equation (4.1) for the linear predictor η = xTi βr, one obtains

log πir
πic

= xTi βr, r = 1, ..., c, (4.2)

i.e. the logarithmised chance, or

πir
πic

= exp(xTi βr), r = 1, ..., c, πir
πic

= exp(xTi βr), r = 1, ..., c, (4.3)

i.e. the relative chance of category r and reference category c. Consequently,
the exponential of the coefficients of the multinomial logit model expresses
how the chance for category r compared to the reference category changes if
the value of a particular covariate xj is increased by one unit in the case of
metric covariates or if xj is taken instead of reference category xJ in the case
of categorical covariates. Thereby one has to be attentive as an increase of
this chance does not mean that the chance of the corresponding category r

compared to other categories apart from the reference leads to an increase as
well. Equations (4.2) and (4.3) show that every category r (r = 1, ..., c − 1)
exhibits its own linear predictor ηir as well as its own coefficent.
The described interpretation as well as the representation of the linear predic-
tor η = xTi βr in terms of equation (4.2) and (4.3) is reminiscent of the logit
model that is described by

log π

1− π = xi
Tβ or π = exp(xTi β)

1 + exp(xTi β) .

The logit model concernes a binary dependent variable Y such that the corre-
sponding interpretation of the coefficients refers to the chance of the occurrence
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of Y compared to the non-occurence. Thus, the logit model can be regarded
as a special case of the multinomial logit model, namely the one that exhibits
two categories only. At many points later on the logit model will form the
basic model, as the graphical illustration is simpliefied by considering two cat-
egories only and transferring the proposed extended models to cases of more
categories will be obvious.

4.2. The data generating process

For persuing the goal of constructing a model that is able to deal with a de-
pendent categorical variable that attains values that are coarsened induced by
epistemic uncertainty, first a quite simple model will be introduced that relies
on the iid assumption and does not include any covariates. In a second step
this model will be extended by regarding a model that is based on the com-
monly known multinomial logit model and thus incoporates covariates. While
within the iid model the probability of category “A” and of category “B” is the
same for all individuals, the model with covariates implies probabilities that
depend on the corresponding covariates xi1 and xi2 of individual i. Hence,
different data generating processes (DGP) are needed, which will be described
in more detail next.
As in the majority of cases real datasets that contain coarsened observations
do not give any indication of the true values of these coarse observations, it has
been decided to base the analysis on simulated data. The categorical variable
that will be considered has two true categories only, so that the formal descrip-
tion of the multinomial logit model will equal the special case of a logit model
(see equation (4.4)). Hence, in this case the requested data should contain a
categorical variable Y with two categories “A” and “B”, variable Ycoarse which
reflects the observed values, namely “A”, “B” or “A XOR B”, and in case of
regarding the model with covariates the data has to enclose variables X as
well.
The parameters that have been involved within the data generating processes
can be infered from Table 4.1, where the processes itself will be described in
more detail in the following.
Because of the iid assumption within the model without covariates, in this
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General number of observations per dataset: n=10000
parameters number of datasets : M = 100
(both models) number of categories of Y : c = 2
Parameters πA = 0.67
for DGP ⇒ πB = 0.33
of iid- model
Parameters number of covariates: p = 2
for DGP X1 ∼ Po(lambda = 3), X2 ∼ N (mean = 0, sd = 2)
of model with covariates βA0 = −0.3, βA1 = 0.6, βA2 = 1.5

Table 4.1.: Parameters of data generating processes under epistemic uncertainty.

model the probability of category “A” and of category “B” is the same for all
individuals i (i = 1, ..., n), i.e. πiA = πA and πiB = πB. Here category “A”
has been sampled with probability 0.67, as this value roughly equals the mean
probability of occurence of category “A” that will result in the model with
covariates. This choice reflects the intention to have two comparable models.
Consequently category “B” will be sampled with probability 1 − πA = 0.33.
As one is interested in involving the coarsened values of Y instead of its true
precise values, data additionaly have to contain variable Ycoarse. In order to
generate Ycoarse, different values of q1 = P (Ycoarse = “(A XOR B)”|Y = “A”)
and q2 = P (Ycoarse = “A XOR B”|Y = “B”) have been applied (notation see
page 9). For this purpose q1 and q2 varied between 0.1 and 0.9 by increments of
0.1 (→ q1 = 0.1, 0.2, 0.3, ..., 0.9, q2 = 0.1, 0.2, 0.3, ..., 0.9) and all 81 combina-
tions of q1 and q2 were used. Thus, 81 Ycoarse variables of dimension n = 10000
were created by sampling category “A XOR B” with probability q1 (resp. q2) in
case that the true category of Y is “A” (resp. “B”). Thus, given true category
“A” and given true category “B” those categories are observed in a precise way
with conditional probability (1 − q1) and (1 − q2) respectively. The values of
the true variable Y , the values of these 81 observed variables Ycoarse as well as
one further variable Ycoarse82, which will be needed in Subsection 4.5 in context
of partial identification, are depicted in Table 4.2 and complete the simulated
dataset that will be used in context of the model without covariates.
In order to be able to obtain more convincing results and to calculate evalu-
ating measures as the median relative bias or the variance of that bias, not
only one dataset of that kind, but 100 ones have been simulated, which have
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Y Ycoarse1 Ycoarse2 · · · Ycoarse82

B A XOR B B · · · B
A A A · · · A XOR B
B B B · · · A XOR B
... ... ... ... ...
A A A · · · A XOR B

Table 4.2.: Structure of simulated datasets that are used for the model without
covariates.

10000 observations respectively. These datasets differ by renewed sampling of
the true categories of Y , such that different Ycoarse can result as well.
As in the model with covariates the probabilities of occurence P (Yi = r|xi) =
πir of category r = A,B represent probabilities conditional on the values of
the covariates X, in this context covariates are generated first. In order to
be able to gain insight into the consequences of discrete as well as contin-
uous covariates, one Poisson distributed variable X1 with λ equal to three
(X1 ∼ Po(3)) and one normal distributed variable X2 with a mean of zero
and a standard deviation of two (X2 ∼ N (0, 4)) have been used. By means
of these covariates probabilities of occurence could be calculated according to
equation (4.1), which in turn where used in order to determine the true cate-
gories of Y . Thereby, for every individual i specific probabilities of occurence
exist that rely on the corresponding values xi1 and xi2, where the true cate-
gories of variable Y , namely category “A” and “B”, have been sampled with
probability πiA and πiB = 1− πiA, respectively.
In this way data as sketched in the first three columns of Table 4.3 result, which
rely on the following precise multinomial logit model with two covariates and
two possible true categories of the dependent variable Y :

P (Yi = A|xi) = πiA = exp(βA0 + xi1βA1 + xi2βA2)
1 + exp(βA0 + xi1βA1 + xi2βA2) .

As one can notice from Section 4.1, the multinomial logit model is described
by c − 1 category specific coefficients. Nevertheless, here only one β, namely
βA = (βA0, βA1, βA2), has to be estimated as there are two categories (c =
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2 ⇒ c − 1 = 1) only and category B will be the reference category with
corresponding probabilities

P (Yi = B|xi) = πiB = 1
1 + exp(βA0 + xi1βA1 + xi2βA2) .

This precise model shall be extended in Subsection 4.3 by including a coarsened
variable Ycoarse instead of Y and the goal of this section will be to investigate
under which conditions the model that relies on the coarsened values is able to
generate appropriate estimators β̂ for parameter β. Different kinds of coars-
ening processes are determined by the same procedure as described in context
of the data on which the model without covariables will be based on, such that
again 82 variables Ycoarse of dimension n = 10000 are generated. An extraction
of the data that will be used in the framework of the model with covariates is
illustrated by Table 4.3.
As in the case of data in context of the model without covariates, not only one
dataset, but 100 datasets of that kind are generated. These datasets differ by
renewed sampling of X1 and X2, such that different values of Y and Ycoarse

can yield.
From both datasets it is expected that one is able to analyse the change of
θ̂, the estimator of the parameter of interest θ, when extended models that
incorporate the imprecision of the observed data Ycoarse, formed by different
coarsening mechanisms, are applied. But before, these models that extend the
commonly known precise models have to be introduced.

Y X1 X2 Ycoarse1 Ycoarse2 ... Ycoarse82

A 7 0.2456983 A A XOR B · · · A
A 1 1.7636975 A A · · · A
A 5 0.8042766 A A · · · A XOR B
B 2 0.5196141 B B · · · B
... ... ... ... ... ... ...
B 3 -5.134471 B A XOR B · · · A XOR B
A 1 -0.7402479 A A · · · A
A 2 2.448102 A A · · · A XOR B

Table 4.3.: Structure of simulated datasets that are used for the model with co-
variates.
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4.3. The model without and with covariates

In the course of this chapter analyses are based on two models, namely the
model without and and the model with covariates, where these models will
be called “model 1” and “model 2” respectively. After having addressed the
corresponding optimization problems of these two models in Subsection 4.3.1,
some implications of the estimation problem (see Subsection 4.3.2) as well as
some general first results will be shown (see Subsection 4.3.3). Thereby, all
analyses will be shown for model 1 first, where analogous investigations will
be made for model 2 afterwards. While this section considers estimation more
generally, Section 4.4 and 4.5 focus on the case of CAR and the way how
partial identification can be applied.

4.3.1. The optimization problem

The iid assumption that will be implied by model 1 simplifies a lot in the
sense that the probability of occurence of a particular category r (r = 1, ..., c)
is the same for all individuals i (i = 1, ..., n). In order to keep things simple,
the case will be addressed that the dependent variable Y exhibits two true
categories only, namely “A” and “B”, which can be observed in a coarsened
way with probabilities q1 = P (Y = (A XOR B)|Y = A) and q2 = P (Y =
(A XOR B)|Y = B), respectively (see page 9). Thus the corresponding
likelihood is described by

L(q1, q2, πiA) =
∏
Yi
P (Yi = y)

=
∏

i:Yi=A
P (Yi = A|Yi = A) · πiA ·

∏
i:Yi=B

P (Yi = B|Yi = B) · (1− πiA)·

∏
i:Yi=(A XOR B)

P (Yi = (A XOR B)|Yi = A) · πiA + P (Yi = (A XOR B)|Yi = B) · (1− πiA)

=
∏

i:Yi=A
(1− q1) · πiA ·

∏
i:Yi=B

(1− q2) · (1− πiA) ·
∏

i:Yi=(A XOR B)
q1 · πiA + q2 · (1− πiA).

(4.4)

106



4.3. The model without and with covariates

and the log-likelihood by

l(q, πiA) = ln(L(q, πiA)) =
∑

i:Yi=A
(ln(1− q1) + ln(πiA)) +

∑
i:Yi=B

(ln(1− q2) + ln(1− πiA)) +
∑

i:Yi=AB
ln(q1πiA + q2(1− πiA))

iid= nA · [ln(1− q1) + ln(πA)] + nB · [ln(1− q2) + ln(1− πA)]

+nAB · [ln(q1πA + q2(1− πA))],

where nA, nB, and nAB denote the number of cases in which categories “A”,
“B” and “A XOR B” have been observed, respectively.
By optimization of the loglikelihood the following three estimation equations
result:

I.) ∂

∂q1
= nAB

q1πA + q2(1− πA)πA −
nA

1− q1

!= 0

II.) ∂

∂q2
= nAB

q1πA + q2(1− πA)(1− πA)− nB
1− q2

!= 0

III.) ∂

∂πA
= nAB

q1πA + q2(1− πA)(q1 − q2) + nA
πA
− nB

1− πA
!= 0.

(4.5)

In the precise case only the third estimation equation with q1 = q2 = 0 is of
importance and hence one obtains

nA
πA
− nB

1− πA
!= 0

⇔ πA = nA
nA + nB

,

which means that the probability of occurrence of category “A” is estimated
by the relative proportion of values “A”.
But intuitive unique results as in the precise case do not result if one focuses on
the imprecise case (q1 6= 0, q2 6= 0) when additionaly to πA, parameters q1 and
q2 are unknown and requested to be estimated. This can be explained by the
relation between q1 and q2 which is induced by the fact that both probabilities
characterize the mechanism of creating coarsened observations “A XOR B”.
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4. Multinomial logit model - epistemic

Thus for instance for a given medium number of coarsened values and a rather
high value of q1, the value of coarsening parameter q2 is restricted to be relative
small compared to q1 as only a fixed medium number of “A XOR B” values has
been generated. This relation will be shown analytically later on in context of
partial identification in Section 4.5. The dependence between q1 and q2 is also
reflected in the first two estimation equations of (4.5) and hence there are only
two independent equations, such that two parameters can be estimated only.
Therefore, one has to think about identifying restrictions according to q1 and
q2, as it will be done in the course of this section.
Apart from this model without covariates, a model with covariates will be ad-
dressed which differs by the fact that the probabilities of occurence depend
on the values of the covariates in the way as described in (4.1). Thus, one
can replace this dependence structure for every πiA of the likelihood of equa-
tion (4.4) and one obtains the following likelihood for the model with two
covariates which refers to a data structure that is ordered in the sense that
individuals 1, ..., N1 exhibit observed value “A”, value “B” is observed for in-
dividuals N1 + 1, ..., N2 and individuals N2 + 1, ..., N are the ones that show
coarsened values “A XOR B”:

L(q1, q2, βA) =
N1∏
i=1

(1− q1) exp(βA0 + xi1βA1 + xi2βA2)
1 + exp(βA0 + xi1βA1 + xi2βA2)

N2∏
i=N1+1

(1− q2) 1
1 + exp(βA0 + xi1βA1 + xi2βA2)

N∏
i=N2+1

(q1
exp(βA0 + xi1βA1 + xi2βA2)

1 + exp(βA0 + xi1βA1 + xi2βA2) +

q2

1 + exp(βA0 + xi1βA1 + xi2βA2)).
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4.3. The model without and with covariates

The last part is dropped if one addresses the precise case with q1 = q2 = 0, such
that the likelihood for the multinomial logit model (see Section 4.1) follows.
By optimization of the general log-likelihood

l(q1, q2, βA) =
N1∑
i=1

ln((1− q1) exp(βA0 + xi1βA1 + xi2βA2)
1 + exp(βA0 + xi1βA1 + xi2βA2)) +

N2∑
i=N1+1

ln((1− q2) 1
1 + exp(βA0 + xi1βA1 + xi2βA2)) +

N∑
i=N2+1

ln(q1
exp(βA0 + xi1βA1 + xi2βA2)

1 + exp(βA0 + xi1βA1 + xi2βA2) +

q2

1 + exp(βA0 + xi1βA1 + xi2βA2)),

one can draw the same conclusions as in the context of the model without
covariates, as the dependence of q1 and q2 and their underlying estimation
equations leads to an identification problem in the sense that additional as-
sumptions concerning q1 and q2 are necessary.

4.3.2. Implications of the optimization problem

Generally, one can distinguish between the following four cases in the frame-
work of dealing with the identification problem arising in model 1 and model
2 (see Subsection 4.3.1):

a) The precise case
b) Known coarsening mechanism
c) Assuming CAR
d) Involving ideas of partial identification.

These cases are also illustrated by means of Figure 4.1.

Case a) and b) address cases in which the coarsening is known, because the
precise case can be regarded as a special case of case b) as in this case coarsen-
ing parameters are known to be q1 = q2 = 0, i.e. that there is no coarsening.
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4. Multinomial logit model - epistemic

Coarsening mechanism
(q1 and q2)

known

q1=q2=0 
precise case

(case 1a/2a)

q1≠0 and 
q2≠0

(case 1b/2b)

unknown

CAR↔
q1=q2

(case 1c/2c)

Partial identification

(case 1d/2d)

Case d.I: R=q2/q1 known

Case d.II: R<1 known only

Case d.III: including upper
bound

No problem of identification

→ point identified solutions

Figure 4.1.: Cases a) to d) that are implied by a known and an unknown coarsening
mechanism.

Thereby, these both cases can be regarded as rather easy cases, because there
are as many independent estimation equations as parameters that have to be
estimated (model 1: one estimation equation and only πA has to be estimated,
model 2: three estimation equations and βA0, βA1 and βA2 are the parameters
that have to be estimated).
When the coarsening is unknown, parameters q1 and q2 have to be estimated,
which leads to dependent estimation equations and the need for identifying re-
strictions. These restrictions can be derived by including the CAR assumption
or aspects of partial identification and thus case c) and case d) represent meth-
ods that show possibilities how one can deal in situations when the coarsening
is unknown.

4.3.3. Some general first results

Some particular circumstances of these four cases will be focused for both
models in a general way in the framework of this subsection first. More details
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4.3. The model without and with covariates

concerning the analysis in case of imposing the assumption of CAR as well as
investigations that rely on aspects of partial identification will be considered
in Section 4.4 and 4.5 respectively.
In the context of the following analyses it is of peculiar interest to evaluate the
empirical estimators that result by optimization of the loglikelihood of model
1 and model 2. Thereby the relative empirical bias (or short: relative bias)
will play an important part, which is calculated by

Biasrel = θ̂ − θ
|θ|

,

where θ is the parameter of interest and θ̂ its empirical estimator. The relative
bias indicates the percentual deviation of the empirical estimator from the true
estimator and its preference consists of the independence of the magnitude of
the true parameter. The calculation of the relative bias will be based on the
100 datasets of the simulated data proposed in Section 4.2, where it will be
started with some first results of model 1.

Model 1:

Parameter πA represents the parameter of main interest in model 1, so that
the relative bias for this estimator will be considered for particular simple situ-
ations of cases a) to d), where Figure 4.2 showes the corresponding results. As
the results concerning the realtive bias of these four cases are depicted within
the same plot, comparisons can easily be made.
The underlying estimator of the first boxplot that concernes the precise case
in the sense that precise variable Y instead of Ycoarse has been involved into the
model, can be regarded as unbiased with a median relative bias of 1.228e-05
and a very small standard deviation of 2.625542e-07.
From the second boxplot it can be noted that a minimal underestimation with
a median relative bias of -0.0004090 and an increasement of standard devia-
tion to 0.004756693 result when the liklihood is optimized which here implies
a constant known coarsening of q1 = 0.2 and q2 = 0.4 (i.e. Ycoarse13 has been
implied). This additional uncertainty in case b) compared to case a) can be as-
cribed to the underlying sampling process in the framework of the coarsening.
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Relative bias of π̂A in cases 1a to 1d.I

Figure 4.2.: Case 1a-1d.I: Boxplot showing the relative bias of π̂A.

In the sense the true values q(y|y) are not exactly reflected by the sampled
data.
Under the assumption of CAR (case c)) estimator π̂A is point identified, as it
will be explained in Subsection 4.4.1. Here this CAR assumption is involved
within the estimation and data are underlying that are described by coarsening
parameters q1 = q2 = 0.3 (Ycoarse21 has been implied), so that CAR is valid
indeed. Comparing the boxplot of case c) to the one of case b), the standard
deviation of 0.005218006 is only neglegible higher and the median bias of
0.0005926 is very small. Thus, the empirical estimator under CAR seems to
be quite good. Nevertheless, here the case has been considered that CAR has
rightly been assumed, but in practice deviations of CAR are expected. Thus
it could be interesting to analyse the impact concerning the relative bias if
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4.3. The model without and with covariates

the CAR assumption is incorporated within the estimation, but it is not valid
indeed. This will be addressed in Subsection 4.4.2
The last boxplot depicts a very easy situation in the framework of partial iden-
tification, which is denoted by case d.I in Figure 4.2. In this case the relation
of the coarsening parameters R = q1

q2
is known and rightly involved into the

estimation. In this way one parameter less has to be estimated and thus there
is no identification problem anymore. For illustrating this situation, analysis
has been based on Ycoarse82 (see Subsection 4.2) of the 100 simulated datasets,
where these observed variables have been coarsened by using a coarsening pro-
cess that is described by q1 = 0.4 and q2 = 0.32. Thus R = q2

q1
= 0.32

0.4 = 0.8
is valid. The last boxplot shows the result concerning the realtive bias of π̂A,
if this value of R = 0.8 is known and applied within the estimation. One can
note that minimum and maximum relative bias of -0.0135100 and 0.0157200
as well as median and standard deviation of the relative bias of -0.0006198
and 0.004991033 are very similar to the corresponding values of the case that
applies the CAR assumption. This is not surprising, as CAR is simply a spe-
cial case of q2 = R · q1 with R = 1. Although one is able to make more flexible
assumptions by means of this generalization, in many situations – especially
in areas where there has been sparse research – the problem of having no idea
about the relation of q1 and q2 and thus about the true value R endures. This
problem will further be addressed in Section 4.5.
Here in all situations true coarsening probabilities that are of rather small or
middle amount are involved (q(y|y) values between 0.2 and 0.4) in order to ob-
tain results that are fairly comparable. Generally, one expects a comparable
greater relative bias, the greater the amount of coarse observations, i.e. the
greater the values of the true coarsening parameter q(y|y), because the implied
uncertainty is increased under these circumstances.
Analgous investigations will be made for model 2 next.

Model 2:

In the framework of model 2 estimation of parameters β0, β1 and β2 is of
main interest. The boxplots in Figure 4.3 concern the relative bias of the cor-
responding estimators for particular simple circumstances of cases a) to d).
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4. Multinomial logit model - epistemic

Thereby, the same situations are addressed as in model 1 (e.g. truely assumed
value of R = 0.8).
For all four cases it can be noted that the median relative bias of β̂0 and its
standard deviation are relatively large compared to median relative bias and
standard deviation of β̂1 and β̂2 (e.g. median relative bias of β̂0 for cases a, b,
c, d, resp.: -0.02260, -0.02895, 0.03795, 0.01297, median relative bias of
β̂1 for cases a, b, c, d, resp: -0.0020950, -0.005533, 0.004951, 0.006704).
The fact that estimators β̂1 and β̂2 are nearly unbiased is in accordance with
some further results that will be shown later on.
Moreover, comparing the boxplot of the different cases one can conclude that
the median relative bias of the precise case as well as its standard deviation
is lower than in case b) and case c). Furthermore, one can note from com-
paring case b), c) and d) that similar median relative bias as well as a similar
standard deviations of the relative bias result. These results correspond to the
investigation of the relative bias of π̂A in the model without covariates and
explanations from there can be referred to this case.
As here the simplest circumstances of case c) and d) have been regarded,
namely that CAR is truely assumed and that the true value of R is known,
further considerations concerning cases of wrong or less information have to
be made concerning the assumtpion of CAR in Section 4.4 and partial identi-
fication in Section 4.5.

4.4. The assumption of “coarsening at random”

Firstly, the general meaning of the assumption of CAR in the context of the
modelling approach as well as its inclusion into the optimization problem will
be regarded in Subsection 4.4.1. Afterwards the problem of wrongly assuming
CAR will be investigated for model 1 and model 2 in Subsection 4.4.2.

4.4.1. The optimization problem under the assumption of
CAR

As already extensively explained in Section 2.1, “coarsening at random” (CAR)
means that the conditional probability of obtaining a particular coarsened
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Figure 4.3.: Case 2a-1d.I: Boxplot showing the relative bias of the β estimators.
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4. Multinomial logit model - epistemic

observation for given true values (i.e. P (Y = y|Y = y)) takes the same
value for all true values y that correspond to the observed data. Referring
to the simple case of regarding two true categories only, namely “A” and
“B”, under CAR the probability that determines the coarsening mechanism
P (Y = (A XOR B)|Y = y) is constant, no matter which true categories
are underlying as long as they are consistent with the observed values, i.e.
the true value y can only be “A” or “B”, but not “C”. Thus, both cate-
gories are coarsened to “A XOR B” with the same probability and hence
q1 = P (Y = (A XOR B)|Y = A) = P (Y = (A XOR B)|Y = B) = q2.
For instance, if some categories are socially undesirable this assumption does
not seem to be justified, as respondents that belong to these categories might
answer in a coarsened way more probable. Therefore, it is important to reflect
about the justification of the assumption of CAR before involving it into the
model.
In case that CAR can be regarded as a reasonable assumption, the correspond-
ing relation of q1 = q2 = q leads to a solution of the identification problem
already addressed in Subsection 4.3, because one parameter less, namely only q
instead of q1 and q2, has to be estimated (notatation q: see page 2). Although
model 1 and model 2 differ by the fact that parameter πA in model 2 is not
constant, the structure of the corresponding likelihoods is similar, wherefore it
will only be analysed how estimators can be derived in model 1 involving the
CAR assumption q1 = q2 = q.
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4.4. The assumption of “coarsening at random”

For this purpose, one can find an estimator for q(y|y) by summing up the first
and the second estimation equation of Equation 4.5, so that

I.) + II.) : nAB
q · πA + q · (1− πA) · πA −

nA
1− q +

nAB
q · πA + q · (1− πA) · (1− πA)− nB

1− q = 0

⇔ nAB
q
− nA

1− q −
nB

1− q = 0

⇔ nAB
q

= nA + nB
1− q

⇔ nAB · (1− q) = q · (nA + nB)⇔ 1− q
q

= nB + nB
nAB

⇒ q̂ = 1
nA+nB
nAB

+ 1 = nAB
nA + nB + nAB

results. Moreover an empirical estimator for the probability of occurence of
category “A”, namely π̂A, can be derived by simply solving the third estimation
equation of Equation (4.5) for πA, in which the first part is dropped, as the
factor (q1 − q2) is equal to zero in case of CAR:

from III.) nA
πA
− nB

1− πA
⇔ nA(1− πA) = nBπA

⇔ nA − nA · πA = nB · πA ⇔ nA = πA · (nA + nB)

⇒ π̂A = nA
nA + nB

.

Therefore, the probability that describes the coarsening mechanism q(y|y) is
estimated by the proportion of observed “A XOR B” values and the empirical
estimator for the probability of occurence of category “A” equals the propor-
tion of observed “A” values if all coarsened values are ignored.
Both results can be illustrated by means of two CAR situations which are
depicted in Table 4.4 and 4.5. Thereby, it has to be noted that the estimation
of parameters like q(y|y) and πA based on six (situation 1) or nine (situation
2) observations can hardly be justified. But as these examples only serve as
illustration of the estimators’ interpretation, this should not be too problem-
atic.
In case 1 (case 2) for given true category “B” the estimated probability of
observing the coarsened value “A XOR B” is q̂2 = 2

4 = 1
2 (q̂2 = 2

6 = 1
3) and
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Y A A B B B B
Y A A XOR B B A XOR B A XOR B B

Table 4.4.: Example 1: CAR.

Y A A A B B B B B B
Y A A A XOR B A XOR B B B B B A XOR B

Table 4.5.: Example 2: CAR.

thus equals the estimated probability q̂1 of observing “A XOR B” for given
true category “A”. Therefore, the probability of observing coarsened observa-
tion “A XOR B” is constant no matter which true category is underlying and
hence CAR is valid. Under CAR the empirical estimator of Equation (4.6)
is applicable according to which the probability of observing coarsened value
“A XOR B” for given true values can be estimated by q̂= nAB

nA+nB+nAB and hence
q̂ = 3

6 = 1
2 in case 1 (3

9 = 1
3 in case 2). Thus, it could be illustrated that under

CAR there is no difference between conditioning only on the true “A” values,
only on the true “B” values or conditioning on all values when one is interested
in the estimated probability of observing coarsened values, i.e. q̂1 = q̂2 = q̂.
In this way the reason for conditioning on all observations (nA + nB + nAB)
and regarding all coarsened observations (nAB) in the empirical estimator for
q(y|y) can be comprehensible.
Moreover, the estimator for the probability of occurence of category “A”,
namely π̂A, can be illustrated by means of this example. As under CAR
the conditional probability of a particular coarse observations for given true
values is constant no matter which true category is underlying, this coarsening
by random leads to the conclusion that these coarse observations can be simply
ignored. Thus, in case 1 one obtains an empirical estimator of π̂A = nA

nA+nB = 1
3

(in case 2 of π̂A = 2
6 = 1

3), which equals the empirical estimator calculated by
means of the true Y values. Although the derived estimator for πA under CAR
looks equally as the estimator in the precise case (see equation (4.6)), it has
to be noted that these estimators differ in the sense that the former one drops
all coarsened observations, while the later does not exhibit coarsened values
at all (q1 = q2 = 0).
Solving estimation equations (see Equation (4.5)) for parameter q(y|y) and
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4.4. The assumption of “coarsening at random”

πA under CAR has shown that the first two estimation equations have been
helpful for determining an estimator for q(y|y), where the third equation was
applied in order to obtain π̂A. Thus, the first two equations are dependent and
are only able to estimate one parameter, namely q, instead of two parameters
q1 and q2. That is why unique empirical estimators could be found under the
assumption of CAR. Analogous findings result when CAR assumption is in-
volved within the analysis of deriving emprical estimators for q(y|y), β0, β1,
and β2 in the framework of model 2.
With regard to rightly assuming CAR in case of coarsening parameters q1 =
q2 = 0.3 the relative bias for the parameters of interest, namely π̂A for model
1 and β̂0, β̂1 and β̂2 for model 2, already has been shown in Figure 4.2 and 4.3.
For the same setting boxplots depicting the relative bias of q̂ can be found in
the Appendix A.
But in practice analysts often do not know, if they face a situation of CAR or
not. Referring to this, further considerations and investigations concerning the
consequences that are connected with wrongly assuming CAR will be made in
the next subsection.

4.4.2. Analysis if CAR is wrongly assumed

Here it will be of peculiar interest how the relative bias increases if one involves
the assumption of CAR into the estimation in case that it actually is not valid.

Model 1:

This can be investigated by regarding Figure 4.4, which showes the relative
bias of π̂A if the true coarsening mechanism is characterized by some different
combinations of q1 and q2 and the CAR assumption is still involved into the
estimation by setting q1 = q2 = q. Thereby, the median of the relative bias
based on all 100 simulated datasets is depicted. One can note that the relative
median bias increases the more one deviates from the case of CAR. Thus, the
combination of q1 and q2 values that differs most from the case of CAR, namely
q1 = 0.9 and q2 = 0.1, causes the largest median relative bias of 0.7246411.
It can be noted from the extent of the q1 = 0.1 and q2 = 0.9 combination
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underlying median relative bias of 0.4151588, that one does not face a sym-
metric problem. This can be explained by the fact that in the simulated data
the number of true “A” values exceeds the number of true “B” values and thus
for instance a situation I.) with q1 = P (Y = (A XOR B)|Y = A) = 0.9 and
q2 = P (Y = (A XOR B)|Y = B) = 0.1 absolutely creates more coarsened
values as ninety percent of the large number of true “A” values are going to be
coarsened, where in situation II.) with q1 = P (Y = (A XOR B)|Y = A) = 0.9
and q2 = P (Y = (A XOR B)|Y = B) = 0.1 absolutely less “B” values are
observed as “A XOR B”. Hence, implied uncertainty is larger in situation I.)
and thus the underlying median relative bias is expected to be larger.

Model 2:

Analogous analyses have been made concerning model 2, where the median
bias of estimators β̂0, β̂1 and β̂2 will be depicted here. As the order of mag-
nitude of the relative bias of β̂0 and the one of β̂1 and β̂2 is quite different, a
seperate plot for β̂0 has been created.
Figure 4.5 showes that the larger the deviation from CAR, the larger the me-
dian relative bias. Thus the maximal median relative bias for β̂0 results if the
empirical estimator that involves the CAR assumption is applied in case that
q1 = 0.1 and q2 = 0.9 (relative bias of: 7.29290594) as well as q1 = 0.9 and
q2 = 0.1 (median relative bias of: -7.27332235). Thereby, the situation looks
fairly symmetric compared to the one concerning model 1 (see Figure 4.4).
This could be reasoned by the fact that here more aspects, as for instance the
interaction of the bias of the three parameters, have to be involved compared
to model 1 in which the bias of just one parameter, namely π̂A, has been in-
vestigated.
Against this, one can note in Figure 4.6 that this structure of observing an
increasing bias the more one deviates from CAR, can not be made for the
estimators β̂1 and β̂2. Here the median relative bias is relatively small for all
combinations of q1 and q2 and even if there is a quite strong deviation from
the CAR assumption, the calculation of empirical estimators β̂1 and β̂2 by
involving the CAR assumption seems to be justified.
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Figure 4.4.: Case 1c: Consequences for the median relative bias of π̂A if there is a
deviation of CAR.

In summary, it has been shown that point identified results can be obtained
in the case of CAR. Nevertheless, it is of prime importance to check if CAR
assumption is justified indeed, as otherwise quite large deviations for emprical
estimators π̂ in model 1 and β̂0 in model 2 resulted. This aspect clarifies the
necessity to find a solution how one can deal with the identification problem
proposed in Section 4.3, in case that CAR assumption has to be neglected.
This problem will be addressed in the next section.
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Figure 4.5.: Case 2c: Consequences for the median relative bias of β̂0 if there is a
deviation of CAR.

4.5. Involving ideas of partial identification

Solving estimation equations of model 1 and 2 leads to an identification prob-
lem (see Subsection 4.3) in the sense that a set of possible π̂A in model 1 and
possible β̂0, β̂1 and β̂2 in model 2 are available for different values of q1 and q2

that are determined by the empirical evidence. Investigations can either incor-
porate the empirical evidence that is described by the traditional assumption
of 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1 or further restrict it by the upper bounds
that have been derived in Subsection 2.2.6 and do not rely on any contentual
assumptions.
On the one hand one pursues the goal to address this identification problem by
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Figure 4.6.: Case 2c: Consequences for the median relative bias of β̂1 and β̂2 if
there is a deviation of CAR.

strong assumptions for q1 and q2 in order to obtain precise empirical estimators
π̂A or β̂0, β̂1 and β̂2, respectively. But on the other hand, strong assumptions
that are not justified should not be imposed as it has been investigated in the
framwork of the CAR assumption in Subsection 4.4.2.
Approaches which face this tradeoff are partial identification and sensitivity
analysis that have been proposed in Section 2.2. As it will be of peculiar inter-
est how those sets of possible empirical estimators can be reduced if different
assumptions for q1 and q2 are involved, the direction of analysis equals the
procedure of partial identification which thus seems to be more appropriate
here (see for instance Figure 2.5). Therefore, some ideas that have been made
in the framework of partial identification will be implied in context of the ex-
tended multinomial logit model now.
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While the inclusion of the relation in case of a rightly assumed R (case d.I.)
has already been considered in Subsection 4.3.3, here two further suggestions
that have been made in Section 2.2 will be addressed, namely

d.I relaxed assumption concerning R, R < 1
d.II implying an upper bound.

Both ideas are denoted by d) according to the notation of cases presented in
Subsection 4.3.2 and will be regarded more in detail in Subsection 4.5.1 and
4.5.2 respectively.

4.5.1. Implying a relaxed assumption concerning R

In many cases one does not know the exact value of R as it has been assumed
in case d.I. (see Subsection 4.3.3). Because of this, it is interesting to inves-
tigate the impact of implying a factor R that is roughly known only, as for
instance that R < 1 (case 1d.II). This means that q1 > q2 and thus category
“A” is coarsened to “A XOR B” more probable than category “B”. Again re-
sults with regard to model 1 will be shown first, where those of model 2 will
follow afterwards.

Model 1:

For analysing this question, Figure 4.7 is helpful. Here empirical estimators π̂A
have been calculated for different assumptions of R = 0.1, 0.2, 0.3, ... , 0.8,
0.9, 1, where these points have been used for a interpolation. Thereby, cases
R = 0 and R = 1 are equal to the assumed precise case and the assumed
CAR case, respectively. In order to avoid confusion, results from the first ten
simulated datasets and thus only ten lines are depicted, where it has been
noted that results from the remaining datasets are similar. The green dashed
line marks the true value of R and the true πA that has been involved within
the data generating process. By implying this vague assumption of R < 1,
one obtains a set of possible estimators of πA, namely π̂A ∈ [0.64, 0.78] if the
mean start (R = 0) and end (R = 1) values of the 100 lines are involved. As
without this assumption the length of this interval is almost doubled, namely
π̂A ∈ [ nA

nA+nB+nAB ,
nA+nAB

nA+nB+nAB ] = [0.40, 0.77], implying this assumption can be
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Figure 4.7.: Case 1d.II: Resulting estimators for π for different values of assumed
R < 1 (interpolation).

very useful, if it is satisfied indeed.
Regarding the boxplots in Figure 4.8 apart the range of the median relative
bias of -0.05577917 and 0.17631857, which can also be derived from the
finding that π̂A ∈ [0.64, 0.78], one can note that under each assumed R a sim-
ilar standard deviation of about 0.005 results and thus the only impact of
assuming a wrong R are biased estimators the more one deviates from true R
as there is no additional uncertainty implied.

Model 2:

Until now, analyses in context of weaker assumptions concerning R have been
considered for model 1 only, wherefore some results for model 2 will be pre-
sented next. Thereby, it has to be noted, that in model 2 three (β0, β1, β2)
instead of only one parameter (πA) as in model 1 have to be estimated under
different assumptions of q1 and q2.
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Figure 4.8.: Case 1d.II: Boxplots showing the relative bias for different values of
assumed R < 1.

The lines in Figure 4.9 show how the estimators change for different values
of R < 1, where the true R that is equal to 0.8 roughly corresponds to the
true beta values, which is illustrated by the green dashed line. As in model
1, corresponding parameters have been estimated for different assumed values
of R = 0, 0.1, 0.2, ..., 0.9, 1 only and lines are obtained by interpolations.
Furthermore, results from the first ten datasets are depicted only again. One
can note that implying the assumption R < 1 leads to β̂0 ∈ [−0.43, 0.79],
β̂1 ∈ [0.35, 0.60] and β̂2 ∈ [0.85, 1.50], where the bounds represent the mean
estimator for the starting and ending point of the lines.
From the estimator specific intervals under the assumption of R < 1 one can
note the comparably large bias of β̂0, wherefore seperated plots for this and
the other estimators have been created in order to investigate the relative bias.
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Figure 4.9.: Case 2.d.II:Resulting estimators for β0, β1 and β2 for different values
of assumed R < 1 (interpolation).

From Figure 4.10 one can see that large deviations of the true R = 0.8 can lead
to an substantial relative bias of β̂0. Thus, under the assumption of R = 0 a
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maximal median relative bias of 3.64 results, which means that β0 is estimated
more than three times larger than it actually is. Nevertheless, the standard
deviation increases minimally from 0.20 under assumed R = 0 to 0.25 for
assumed R = 1.
In Figure 4.11 an essentially smaller median relative bias is depicted for es-
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Figure 4.10.: Case 2.d.II: Boxplots showing the relative bias of β̂0 for different
values of assumed R < 1.

timators β̂1 and β̂2, where maximal values of -0.4159303 and -0.4319532
respectively are attained implying the assumption of R = 0. Even if the rela-
tive bias of β̂1 and β̂2 is quite similar, a slightly smaller standard error of about
0.024 can be noted for the relative bias of β̂2 compared to the one of β̂1, which
is around 0.025. In both cases the standard error increases minimally with
increasing assumed values of R.
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In order to gain an insight into the importance of the assumption R < 1, it
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Figure 4.11.: Case 2.d.II: Boxplots showing the relative bias of β̂1, β̂2 and q̂ for
different values of R < 1.

is reasonable to compare the relative bias obtained under this assumption and
the one without any assumption, i.e. including the empirical evidence only.
In the latter case the relative bias of the empirical estimators β̂0, β̂1 and β̂2

has been calculated that have been obtained by optimization of β for differ-
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ent given combinations of q1 and q2 that are between 0 and 1 (i.e. here the
classical empirical evidence is used instead of the upper bound → see Subsec-
tion 4.5.2). The median relative bias in each of the 100 simulated datasets has
been calculated for both cases, respectively, and the corresponding boxplots
are depicted in Figure 4.12 and 4.13. Because of the different scales, results
for the relative bias of β̂0 as well as of β̂1 and β̂2 are shown in seperated plots.
Thereby, one can note that incorporating the assumption R < 1 leads to a
smaller bias compared to applying the empirical evidence only, and in case of
β̂0 additionaly a substantially decreased standard deviation results. Thus, if
one is able to make assumptions as R < 1, one should include them here, even
if they are of a very vague nature.

4.5.2. Implying an upper bound

In Section 2.2 upper bounds for q1 and q2 could be derived which do not require
any contentual assumption and simply are possible because of the information
that is generated by some precise observations (details see Subsection 2.2.6).
According to this, these upper bounds can also be regarded as a kind of em-
pirical evidence that further restricts the commonly used empirical evidence,
namely 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1. This raises the question (case 1d.III.) to
which extent the upper bounds are able to restrict and outperform the feasible
solutions of π̂A that result from incorporating 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1 only.
In Subsection 2.2.6 the upper bounds q1 and q2 have been proposed as proba-
bilities, which here have to be estimated. If one approximates the containing
probabilities by implying their corresponding empirical estimators, one obtains
upper bounds for estimators q̂1 and q̂2 as follows:

q̂1 =
nAB
n

nA
n

+ nAB
n

= nAB
nA + nAB

and

q̂2 =
nAB
n

nB
n

+ nAB
n

= nAB
nB + nAB

.

Thereby, nA, nB and nAB denote the number of cases being observed as “A”,
“B” and “A XOR B” respectively and n = nA + nB + nA XOR B . In this
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Figure 4.12.: Comparison of relative bias of β̂0 if 1.) including assumption R<1
and 2.) empirical evidence is used only.

case applying these estimators can be considered as unproblematic, as the
underlying sample space of n = 10000 can be regarded as quite large. Against
this, in situations that show a rather small n, it is important to account for
the kind of uncertainty that is induced by sampling variability. As here a
proportion, namely the proportion of the coarse observations conditioned on
the observation of category “A” and the observation of category “A XOR B”, is
considered, the confidence interval for the estimator of the proportion (for large
sample sizes and medium sizes of proportions) can be applied (Kauermann, G.
and Küchenhoff, H. [2011, p. 31]). Here an estimator for the upper bound
is requested, wherefore the upper bound of the confidence interval has to be
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Figure 4.13.: Comparison of relative bias of β̂1 and β̂2 if 1.) including assumption
R<1 and 2.) empirical evidence is used only.

incorporated only, so that modified upper bounds q̂1
∗ and q̂2

∗ that account for
sampling variability can be determined as

q̂1
∗ = q̂1 + z1−α2 ·

√
q̂1 · (1− q̂1)

n− 1 · N − n
N

q̂2
∗ = q̂2 + z1−α2 ·

√
q̂2 · (1− q̂2)

n− 1 · N − n
N

,

where N is the size of the population and z1−α2 the (1 − α
2 )-quantile of the

standard normal distribution, which can be applied in case of large sample
sizes. In case of large sample sizes N−n

n
is neglegible.

But incorporating upper bounds only, there are still a lot of useless solutions
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included. For instance if there is a relatively high proportion of coarsened
observations “A XOR B”, estimators of πA that result from involving pretty
small values of q1 as well as q2 should not be involved. Thus, a procedure
that not only restricts the number of possible solutions of π̂A by incorporating
the derived upper bounds is required, but that also accounts for the relation
between q1 and q2 and thus ensures that the observed number of “A XOR B”
can be generated under these values of q1 and q2. Accounting for the relation
between q1 and q2 does not include any contentual assumptions and thus this
idea can be considered as a kind of empirical evidence as well. In the context
of this relation again empirical estimators are involved that do not account for
sampling variability, which does not seem to be a problem for reasons of the
large sample size of n = 10000.
Thus, the following method has been applied, which is also illustrated by
Figure 4.14:

Figure 4.14.: Case 1.d.III: Graphical depiction of proposed procedure finding a
selection of possible π̂A.
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• Step 1: Calculate all possible solutions if 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1, is
used only, i.e. optimize loglikelihood by πA for different given assumed
conceivable values of q1 and q2 ⇒ matrix M1 that includes all π̂A

• Step 2: Restrict the solutions from matrix M1 by only including those
whose corresponding coarsening estimators q̂1 and q̂2 values do not exceed
their upper bound, i.e. q̂1 ≤ nAB

nAB+nA and q̂2 ≤ nAB
nAB+nB ⇒ matrixM2 that

includes all π̂A that are valid under this upper bound based condition

• Step 3: Select only those entries of matrix M2 that additionally sat-
isfy the relation between q1 and q2 values induced by the law of total
probability:

P (Y = AB) = P (Y = A) · P (Y = (A XOR B)|Y = A)

+ P (Y = B) · P (Y = (A XOR B)|Y = B).

Replacing probabilities P (Y = (A XOR B)), P (Y = (A XOR B)|Y =
A) and P (Y = (A XOR B)|Y = B) by their empirical estimators, one
obtains:

nAB
n

= πAq̂1 + (1− πA) · q̂2.

Solving for q̂1 and q̂2, it follows

– Step 3a):

q̂1 = nAB − n · q̂2 · (1− πA)
n · πA

.

– Step 3b):
q̂2 = nAB − n · q̂1 · πA

n · (1− πA) .

According to Step 3a) for given q̂2 all possible q̂1 are calculated that
should be involved and analogously values of q̂2 are found by means of
Step 3b). As πA is unknown, this is done for all π̂A ∈ [nA

n
, nA+nAB

n
] ⇒

matrix M3 = M3a ∩M3b that contains all entries of M1 that fullfill the
upper bound restriction as well as the relation between q1 and q2
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• Step 4: This procedure is realized by means of all coarsened variables
Ycoarse1 to Ycoarse81 of the simulated data and hence for the 81 true
combinations of true coarsening parameters q1 and q2. For every dataset
the median relative bias has been calculated based on the set of all result-
ing π̂A values, which has been done for every combination of q1 and q2.
Thereby, it has been investigated that similar results can be concluded
from these different datasets and thus it can be justified to illustrate the
result from the first dataset only in order to keep things simple.

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
q2

q 1

prefer
●

●

all values
selection

Preferred approach differentiated by
true combinations of q1 and q2

Figure 4.15.: Case 1.d.III: Evaluation of methods.

In order to evaluate this procedure, median relative bias of the estimators
of πA within matrix M1 and M3 are compared for the first dataset. In this
connection Figure 4.15 showes by the green points for which true underlying
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combinations of q1 and q2 the described procedure outperforms the one which
simply includes all π̂A that result by assuming 0 ≤ q1 ≤ 1 and 0 ≤ q2 ≤ 1 only.
Thus, the procedure that relys on a selection of π̂A should only be applied in
cases which are described by very different underlying true q1 and q2 values, i.e.
situations which strongly differ from CAR. In order to be able to understand,
why this procedure is appropriate in these cases only, the relation of Step 3
is investigated for the underlying assumption of CAR, namely q1 = q2 = q.
If CAR is valid this equality roughly has to be valid for the corresponding
empirical estimators as well (at least if one faces a large sample size as here),
so that

q̂1 = q̂2 = q̂ ⇔ nAB − q̂ · n · (1− πA)
nπ̇A

= nAB − q̂ · n · πA
n · (1− πA) .

This is only satisfied in the case of (1 − πA) = πA ⇔ πA = 0.5, which corre-
sponds to the fact already investigated on page 120, namely that one faces a
symmetric problem only if the proportion of true “A” and true “B” values is
the same, i.e. πA = 0.5. In simulated data one is concerned with parameter
πA = 0.67 6= 0.5, so that the described procedure is inappropriate in case
of CAR or situations that are similar to CAR in this situation of data. As
for situations of CAR or situations that are similar to the case of CAR (see
Figure 4.4) two parameters have to be estimated from the two independent
estimation equations (see equation (4.5)) only and thus point identified esti-
mators can be derived, this does not have to be regarded as problematic.

Critique of the described procedure

Nevertheless, the described procedure that tries to restrict the set of possible
πA without real contentual assumptions, but by implying the upper bounds as
well as the relation between q1 and q2 only, offers a problem that should not be
ignored. As only one parameter has to be identified (either q1 or q2 or πA) in
order to be able to determine the other two from the estimation equations, only
one parameter should be considered as given. But in the described procedure
both parameters, q1 and q2, are treated as given and represent a kind of two
dimensional sensitivity parameter as they are required to satisfy particular as-
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sumptions and for each choice of q1 and q2 a different precise model follows. In
accordance to this, only one parameter, namely πA, is estimated for all given
imaginable combinations of q1 and q2. In this way, as an actually available
restriction about a further parameter is not included, the set of possible π̂A is
too large and involves values that actually do not represent the optima, such
that one is concerned with an overidentified identification problem. Hence,
only a subset of the darkgreen area of Figure 4.14 should be selected. In order
to further restrict this area, one could imply either instead of or additionally to
the restrictions of Step 3) the restriction of the original optimization problem
solved for q1 and q2, and again calculate all possible q1 values that correspond
to the underlying restriction given all possible q2 values that result from their
corresponding restriction (and vice versa). As these restrictions are dependent
on the parameter πA, this should be done for all π̂A ∈ [nA

n
, nA+nAB

n
] for a start.

As further research will be necessary concerning this procedure, the case d.III.
will not be considered in context of model 2.

Until now it has been shown that accounting for epistemic uncertainty within
a multinomial logit model leads to an identification problem, which can be
solved by implying assumptions as CAR. If weak assumptions that do not in-
duce point identification of the parameters of interest can be imposed only,
partial identification represents an instrument that is able to restrict the pos-
sible solutions. Across all analyses a quite interesting result has been noted,
namely that estimators β̂1 as well as β̂2 are nearly unbiased concerning all
analyses, even if CAR is wrongly assumed or wrong assumptions concerning
R (as long as R < 1) are included within the estimation.
In cases in which point identification is required and valid estimators are of
peculiar interest instead of finding the right true categories of coarsened ob-
servations another approach that is based on imputation, a method that is
commonly used in the context of the missing data problem, could be useful.
Some ideas concerning this approach will be suggested in the next subsection.
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4.6. Imputation as an alternative approach

Considering the case of three observed categories only, namely “A”, “B” and
“A XOR B”, the correspondence to the missing data problem is obvious if one
recalls the findings from Subsection 2.1.6. There, the missing data problem
has been described as a mapping from the sample space either into a singelton,
which corresponds to the precise observations “A” and “B” here, or into the
full power set and thus the sample space, which is in accordance with the
coarsened observation “A XOR B”. Thus, as there is no additional restriction
in the sense that particular elements of the power set represent the potentially
true values only, but all elements of the sample space Ω = {A,B} are possible,
coarsened data “A XOR B” can be interpreted as missing.
For that reason commonly used methods in the framework of missing data, as
imputation, can be applied in the context of coarsened data as well in order to
determine quantities of interest. Here these quantities of interest will be the
proportion of cases that belongs to category “A”, namely π̂A, as well as the
coarsening mechanisms q̂1 and q̂2.
Imputation pursues the goal to represent observed information in a way that
valid inferences can be obtained instead of requiring a good predicition of the
missing values. Generally imputation is appropriate if the underlying missing
mechanism is MCAR or MAR (see Subsection 2.1.6), i.e. if the missing does
not depend from the missing variable itself and thus is ignorable. Consequently,
the fact whether observations of variable Y are coarsened or not should not
depend on the values of the true underlying categories of Y and hence CAR
should be valid, i.e. category “A” and “B” should be coarsened to “A XOR B”
with the same probability q1 = q2 = q. Nevertheless, it is interesting to gain
an insight into the apropriability of this method by means of an example of
the case when CAR is not valid. Here multiple imputation will be considered,
where M > 1 datasets will be generated to assess the additional uncertainty
from imputation (Little and Rubin 2002, p. 85–90).
In order to perform multiple imputation in the described situation of coarsened
data, coefficients βp0 , βp1 and βp2 have been estimated by including the cases
only that exhibit precise observations of Y , where the superscript p signifies
“precise”. In a second step these estimated coefficients have been used in order
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to estimate the probability of sampling “A” in the observed imprecise cases
“A XOR B”. These cases and their corresponding quantities are marked by
superscript imp for “imprecise”. Hence, one obtains

π̂impiA = exp(β̂p0 + β̂p1x
imp
i1 + β̂p2x

imp
i2 )

exp(1 + β̂p0 + β̂p1x
imp
i1 + β̂p2x

imp
i2 )

. (4.6)

By sampling categories “A” and “B” with probabilities π̂impiA and 1− π̂impiA , re-
spectively, originally coarsened observations “A XOR B” could be replaced by
precise categories, namely either “A” or “B”. According to the idea of multiple
imputation, this sampling process has been conducted multiple times (here
M = 5) and hence variables Y imputed.1, ..., Y imputed.5 result.
In order to incorporate results of all five imputations, the combining rule (Lit-
tle and Rubin 2002, p. 86) has to be applied, according to which aggregated
¯̂πA can be computed by

¯̂πA = 1
M

5∑
m=1

π̂
(m)
A ,

where M is equal to five and the π̂(m)
A has been estimated by the proportion

of “A” values within the m-th imputed variable. In the same way results
concerning q̂1 and q̂2 can be aggregated by

¯̂q = 1
M

5∑
m=1

q̂
(m)
1 and ¯̂q = 1

5

5∑
m=1

q̂
(m)
2 ,

where q(m)
1 (q(m)

2 ) is estimated by the proportion of all “A” (“B”) values within
the m-th imputed variable.
Following this procedure illustrative imputations have been made for vari-
able Y coarse11, whose underlying coarsening mechanism is determined by
q1 = q2 = 0.2 such that CAR is valid, as well as for variable Y coarse13, which
is characterized by q1 = 0.2 and q2 = 0.4, i.e. a mechanism in which CAR is
not valid.
The relative bias if πA is estimated by means of the true categories Y as well
as relative bias ¯̂πA based on the imputed variables Y coarse11 (CAR) as well
as Y coarse13 (not CAR) are depicted in Figure 4.16.
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One can easily note that from imputation in case of CAR an almost unbiased
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Figure 4.16.: Evaluation of π̂A if multiple imputation based on five imputations
for Ycoarse11 (CAR) and Ycoarse13 (not CAR) are conducted.

estimator ¯̂πA with median relative bias of 0.001320 results, which additionally
impresses because of its quite small standard error of 0.005164195. In this
way, apart from some outliers, the boxplot in case of CAR looks very similarly
to the one in which the relative bias of the estimator based on the true val-
ues of Y is regarded, which shows a median relative bias of 0.0015620 and a
standard deviation of 0.004514712. Although the relative bias for ¯̂πA in the
case in which CAR is not valid is considerably larger by involving a median
relative bias of 0.04429, this amount of relative bias generally can be classified
as still small and acceptable. Moreover, the underlying standard deviation of
0.006105301 is fairly larger compared to the other two cases.
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Considerung Figure 4.17 tendency of results seems to be similar according to
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Figure 4.17.: Evaluation of q̂1 and q̂2 if multiple imputation based on five imputa-
tions for Y coarse11 (CAR) and Y coarse13 (not CAR) are conducted.

the relative bias of ¯̂q1 (¯̂q2). Again, a similar relative bias of 0.0002419 and
0.003908 (0.0007964 and 0.003464) follows, if q̂1 (q̂2) has been calculated
based on all true values of Y and on the imputed values in case of CAR, re-
spectively. Nevertheless, at this time overestimation in the case in which CAR
is not valid is substantially higher and thus a median relative bias of 0.2330
(0.3446) results. Here, the corresponding standard deviation is largest if the
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estimator is based on imputed values in the presence of CAR.
In summary, by means of the boxplots it has been illustratively shown that
pretty good estimators can be concluded if imputation is applied for variables
that have been coarsened at random. In order to investigate this finding more
exactly, one should analyse in more detail how deviation of CAR can influence
the resulting relative bias. Additionally, further research could contain a study
of the consequences that are connected with an increasement of the proportion
of coarsened values, i.e. an increasement of q1 and q2.
Until now, a situation of coarsened values that is equivalent to the missing data
case has been regarded. But furthermore, the applicability of the described
approach in more general situations of coarsened data is of interest, where here
some first considerations in this respect will be mentioned only.
For this purpose a situation with seven observed categories is considered,
namely “A”, “B”, “C”, “A XOR B”, “A XOR C”, “B XOR C” and “A -
XOR B XOR C”. This situation does not correspond to the special case of
missing data, as for instance by observing “A XOR C” additional information
is available in the sense that either “A” or “C”, but not “B” represents the
true category. Against this, in the case of missing data one would only know
that the true category is an element of the sample space, namely either “A”,
“B” or “C”. Hence, one can try to use this additional information implied by
coarsened data within an imputation. One possible procedure of involving this
information can be described by the following steps:

1. Determine π̂impiA , π̂impiB and π̂impiC = 1− π̂impiA − π̂
imp
iB in an analogue way as

in equation (4.6).

2. Set those estimators equal to zero that can be excluded by means of the
information included by the coarsened nature of the observation. For
instance, if “A XOR C” has been observed, p̂iimpiB has to be equal to
zero. Thus, for instance a normalization can be conducted, such that
one obtains

π̂imp,niA = π̂impiA

π̂impiA + π̂impiC

π̂imp,niC = π̂impiC

π̂impiA + π̂impiC

,
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where π̂imp,niA and π̂imp,niC represent the resulting normalized estimators.

3. These estimators are applied as sampling probabilities in the sense that
for instance the value of estimator π̂imp,niA is chosen as probability of sam-
pling category ”A” in case of a corresponding observation “A XOR C”.
Afterwards apply the combining rule from above.

As additional information is implied if imputation is used in case of general
coarsened data, one expects even better results compared to the case which is
equivalent to the missing data problem. In order to investigate the applicability
of this explained procedure, one should validate it by means of simulated data
and base further research on it.
Here, only first ideas concerning imputation as a method in case of coarsened
data have been suggested, where some interesting aspects for further research
have been proposed.
Nevertheless, partly different kinds of results are generated, as by imputation
different estimators of π have been derived, while methods from the previous
subsections have been based on estimations of coefficients β0, β1, β2, which is
not possible by proceding imputation in the way as it has been described here.
Additionaly one generally should think about the basic goal of the analysis
before performing imputation, as imputation should not be used in order to
replace coarsened observations by the underlying true categories, but only for
derivation of appropriate estimates.
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5. A multionomial logit model
based approach under ontologic
uncertainty

The extension of the multinomial logit model that accounts for ontologic uncer-
tainty is completely different compared to the one that incorporates epistemic
uncertainty. Thus, first the multinomial logit model that accounts for onto-
logic uncertainty is proposed by addressing its peculiarity in a general way in
Section 5.1. For reasons of consistency the iid-model as well as a multinomial
logit model based approach with two covariates will be considered again in Sec-
tion 5.2, where the corresponding data generating process, the loglikelihood
as well as some results will be shown respectively. Moreover findings of the
Dempster-Shafer theory will be applied in the context of prediction and the
meaning of additional assumptions will be discussed in Section 5.3.

5.1. Idea and particularity of the model
Having the main idea of ontologic uncertainty in mind, namely that coarse
categories as “{A,B}” reflect the truth in the sense that the corresponding
individuals have not decided between category “A” and “B” yet, it could be
reasonable to treat these coarse categories as own categories that require own
estimators.
This idea corresponds to the one of Chapter 3 in which the ?-notation has been
introduced that suggests an analysis on the power set by means of

P ? : Ω? → [0, 1]

A? → P ?(A?)
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with Ω? = P(Ω) \ ∅.
In this way one is not interested in deriving precise values for coarse observa-

Multinomial logit model based approach that accounts for a
coarse dependent variable under ontologic uncertainty

Data under ontologic uncertainty:
Let Yi be a categorical random variable with nominal scale of measurement
that includes precise as well as coarse categories. Moreover let

• xi be some covariates

• Ω be the sample space of all precise categories of Yi

• Ω? = P(Ω) \ ∅ be the sample space of all possible categories in the
sense that coarse categories are included additionaly

• m = |Ω?| be the number of categories of Yi.

Model under ontologic uncertainty:
The probability of occurence for category r = 1, 2, 3, ..., m − 1 can be
calculated by

P (Yi = r|xi) = exp(xTi βr)
1 +∑m−1

s=1 exp(xTi βs)

and for category m by

P (Yi = m|xi) = 1
1 +∑m−1

s=1 exp(xTi βs)

Figure 5.1.: Extended multinomial logit model that accounts for ontologic uncer-
tainty within the dependent variable

tions as not even precise values exist. Consequently, the nature of the model
and the underlying problem is completely different to the one that includes
epistemic uncertainty, as in this context one of the main tasks has been deter-
mining the underlying coarsening mechanism and thus estimating the param-
eters q1 and q2. As in the presence of ontologic uncertainty own estimators
for these coarse categories are needed instead, an extended multinomial logit
model based approach is introduced here as one can see from Figure 5.1.
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This model can be regarded as an extension of the precise multinomial logit
model explained in Section 4.1. The only difference of these two models can
be described by the fact that the model that accounts for coarse data under
ontologic uncertainty is characterized by an increasement of categories in the
sense that coarse categories are included as well. Therefore own parameter es-
timators have to be determined for those coarse categories, so that estimators
β̂1,..., β̂m−1 result.

5.2. Illustration of the resulting model

In order to illustrate the model introduced in Section 5.1, this model is consid-
ered for simple situations with a sparse number of categories only. After having
explained the underlying data generating process in Subsection 5.2.1, the op-
timization problem as well as some results will be shown in Subsection 5.2.2.
Thereby, for reasons of consistency with Chapter 4 again the corresponding
iid-model without covariates is addressed first, where considerations concern-
ing the multinomial logit model with two covariates will follow afterwards.
Both models will be called model 1? and model 2? in context of ontologic un-
certainty respectively, in order to distinguish them from the iid-model and
the model with two covariates in the presence of epistemic uncertainty and to
establish a connection to the ?-notation of Chapter 3.

5.2.1. The data generating process

As the nature of data under ontologic uncertainty is completely different from
the one that exhibits epistemic uncertainty, a data generating process that
differs from the one explained in Section 4.2 is needed. As the iid-model as
well as the model with covariates will be of interest again, both corresponding
data generating processes will be described here, where the parameters that
have been involved within these both data generating processes can be inferred
from Table 5.1. First the data generating process for the iid model (model 1?)
will be addressed.
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General number of observations per dataset: n=10000
parameters number of datasets : M = 100
(all 3 models)
Parameters πA = 0.48, πB = 0.44
for DGP ⇒ πAB = 0.08
of iid- model number of categories of Y : c = 3
General number of covariates: p = 2
parameters X1 ∼ Po(lambda = 3)
for models with X2 ∼ N (mean = 0, sd = 2)
covariates
Parameters for βA0 = 1.5, βA1 = −1, βA2 = 1.4
model with covariates βB0 = −0.9, βB1 = 0.8, βB2 = −0.1
and 3 categories of Y reference category: βAB
(c = 3)
Parameters for βA0 = 1.5, βA1 = 0.2, βA2 = 0.9
model with covariates βB0 = 1.4, βB1 = 0.8, βB2 = 0.1
and 7 categories βC0 = 0.2, βC1 = 1.2, βC2 = 0.8
of Y βAB0 = 0.8, βAB1 = −0.4, βAB2 = 0.1
(c = 7) βAC0 = 0.7, βAC1 = −0.1, βAC2 = −0.5

βBC0 = 1.4, βBC1 = 0.9, βBC2 = −0.2
reference category: βABC

Table 5.1.: Parameters of data generating processes under ontologic uncertainty.

Model 1?:

Compared to the data used in context of epistemic uncertainty (see Table 4.2),
there is no variable Ycoarse, as under ontologic uncertainty true values of vari-
able Y are not coarsened, but coarse values are the true values itself. As
additionally in the iid model no covariates are included, only variable Y has
to be generated that includes some precise and some coarse values that all
correspond to the truth at the time of data collection. Again, a situation
of two potential precise categories, namely “{A}” and “{B}”, and one possi-
ble coarse observation, namely “{A,B}”, is addressed, where these categories
have been sampled with probabilities 0.48, 0.44, and 1 − 0.48 − 0.44 = 0.08
respectively, as these probabilities will result from the multinomial logit model
based approach and in this way the goal is pursued to consider models that
are comparable. Because of the iid assumptions these probabilities have been
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5.2. Illustration of the resulting model

used for every individual. An extraction of the resulting dataset with 10000
observations consisting of this coarse variable Y only can be seen in Table 5.2.
In this way 100 datasets have been generated, which all differ because of the
randomness of the corresponding sampling process, in order to be able to con-
sider the distribution of evaluating measures as the relative bias later on.

Y

{A}
{B}
{A}
...

{A,B}
{B}
{A}

Table 5.2.: Structure of simulated datasets that are used for the iid model under
ontologic uncertainty.

Model 2?:

Against this, in the model with covariates the probabilities of occurence of
particular categories are dependent on the values of the covariates of the un-
derlying individuals and thus these covariates have to be generated first. As in
Subsection 4.2 one discrete covariate, namely a Poisson distributed covariate
X1 ∼ Po(3), and one metric covariate, namely a normal distributed covariate
X2 ∼ N (0, 4), have been involved. But instead of sampling “A” and “B” with
probabilities of Equation 4.4 and coarsening these categories afterwards as in
Subsection 4.2, now three categories “{A}”, “{B}” and “{A,B}” are sampled
with probabilities

πiA = exp(βA0 + xi1βA1 + xi2βA2)
1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2)

πiB = exp(βB0 + xi1βB1 + xi2βB2)
1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2)

πiAB = 1
1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2) ,

149



5. Multinomial logit model - ontologic

so that coarsening is not needed any more.
In Table 5.3 an extraction of the dataset with 10000 observations is depicted

Y X1 X2

{A} 4 5.064233
{A,B} 4 2.431019
{A} 1 1.969333
... ... ...
{B} 5 1.90167023

Table 5.3.: Structure of simulated datasets for the model under ontologic uncer-
tainty with covariates.

that will form the foundation of the analysis by means of a multinomial logit
model that accounts for ontologic uncertainty. Again, 100 datasets of that
kind are simulated.
In the framework of including some aspects of the Dempster-Shafer theory the
case of more than one coarse category can be interesting. Therefore a third
kind of the latter kind of dataset with two covariates representing the situa-
tion of seven true categories of Y , namely “{A}”, “{B}”, “{C}”, “{A,B}”,
“{A,C}”, “{B,C}”, “{A,B,C}” (i.e. the power set of Ω = {A,B,C} without
the empty set), has been generated. The underlying data generating process
is analogous to the one that incorporates one coarse category only and the
resulting kind of data is generated 100 times again.
These datasets will be used in the framework of analyses by means of model 1?

and model 2? in the next subsection.

5.2.2. Illustrating analyses by means of model 1? and
model 2?

The log-likelihood that has to be optimized as well as some results concerning
the evaluation of the estimation will be shown for the iid-model without co-
variates (model 1?) first and model 2? afterwards.
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5.2. Illustration of the resulting model

Model 1?:

By regarding “A or B” as an own category within the iid model, the cor-
responding log-likelihood

l(q, πiA) = nA · ln(πA) + nB · ln(πB) + nAB · ln(1− πA − πB) (5.1)

results, where nA represents the number of cases with observed category “{A}”,
nB with observed category “{B}” and nAB with observed category “{A,B}”
and the probability of observing category “{A,B}” πAB can be represented as
1−πA−πB. Equation (5.1) can also be interpreted in terms of the correspond-
ing likelihood under epistemic uncertainty by setting q1 and q2 of equation (4.5)
to zero because of the absence of coarsening precise categories and extending
it by an additional part for the coarse category.
Optimizing this likelihood one obtains estimators for the probability of oc-
curence for categories “A” and “B”, namely π̂A and π̂B (reference category
{A, B}), which will be compared with the probabilities that have been in-
volved within the simulation process, namely πA = 0.48 and πB = 0.44. Fig-
ure 5.2 shows the relative bias of estimator π̂A and π̂B, where a relative median
bias of 0.0005772373 for π̂A and −0.0003761718 for π̂B and a standard devi-
ation of 0.009447005 for π̂A and 0.01048505 for π̂B classify these estimators
as quite good. This is not surprising as because of the precise observation of
the categories under ontologic uncertainty this model corresponds to the com-
monly used models that is extended by an additional category “{A,B}” only
so that a precise estimation can be conducted.

Model 2?:

In a similar way the multinomial logit model is extended by a third coarse
category “A or B”, where here the general findings from Section 5.1 can be
easily applied for this simple situation of data (see Section 5.2.1). Thus in this
case a loglikelihood results as follows
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Figure 5.2.: Evaluation of π̂A and π̂B of model 1?.

l(βA,βB) =
N1∑
i=1

ln
( exp(βA0 + xi1βA1 + xi2βA2)

1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2)

)
+

N2∑
i=N1+1

ln
( exp(βB0 + xi1βB1 + xi2βB2)

1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2)

)
+

N∑
i=N2+1

ln
( 1

1 + exp(βA0 + xi1βA1 + xi2βA2) + exp(βB0 + xi1βB1 + xi2βB2)

)
,

which refers to an ordered data structure, i.e. individuals 1, ..., N1 exhibit
category “{A}”, category “{B}” is observed for individuals N1 + 1, ..., N2 and
individuals N2 + 1, ..., N are the indecisive ones, who show coarse category “A
or B”. Analogously the loglikelihood for the case with categories “{A}”, “{B}”,
“{C}”, “{A,B}”, “{A,C}”, “{B,C}” and “{A,B,C}” (see Section 5.2.1) can
be determined.
In order to evaluate the estimators that result from optimizing the correspond-
ing loglikelihoods for both situations of data, the boxplots of Figure 5.3 and
Figure 5.4 can be considered, which show the relative bias. In the situation
of three categories, a comparable large standard deviation of the relative bias
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Figure 5.3.: Evaluation of the resulting β estimators of model 2? (3 categories).

of β̂B2, namely 0.4995586, is apparent, which could be acceptable because
of a quite small median relative bias of 0.07985869. The other estimators
show fairly small median and standard deviation of the relative bias. Against
this, in the situation of seven categories there are some estimators that can be
described by a quite large standard deviation as well as a comparably large me-
dian. Hence, the relative bias of estimator β̂AB2 exhibits a standard deviation
of 1.80242 and a median of −0.3947519, the one of β̂B2 a standard deviation of
1.46592 and a median of −0.2831196, and the one of estimator β̂C0 a standard
deviation of 1.702213 and a median of 0.3407546. While the relative bias of
estimator β̂AC1 shows a quite large standard deviation (1.834586) as well, its
median relative bias of −0.02087467 is comparably small.
Nevertheless, this kind of problem of comparably large standard deviations
and median of the relative bias is not induced by the fact that the model is
extended by implying coarse categories as well, as these coarse categories are
regarded as normal categories representing the truth, which corresponds to the
analysis on the power set.
Until now only the findings according to the general analysis on the power set
under ontologic uncertainty have been applied in the context of this modelling
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approach. But in chapter 3 additionally a way of prediction by means of the
DST has been presented that can be used if decisions have been made such
that there are not any coarse categories left. Some considerations concerning
this will be made in the next Section.
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Figure 5.4.: Evaluation of the resulting β estimators of model 2? (7 categories).

5.3. Including aspects of the DST and implication
of additional information

One can be concerned with situations under ontologic uncertainty that require
a decision at some time. Thereby it is either imaginable that the respondent
has found out rationally and by own motivation which of the imaginable op-
tions that are consistent with his coarse answer fits best to his preferences
or that decisions have been enforced because of external circumstances as for
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instance the election day.
Here in Subsection 5.3.1 it will be illustrated how predicition intervals can
be obtained by means of DST. Although there are reasons why this interval
should not be shrunk, in Subsection 5.3.2 an approach will be suggested that
leads to point identified predictions.

5.3.1. Obtaining prediction intervals by means of DST

In Chapter 3 it has been explained how one is able to make predicitons by
means of the belief function as well as the plausibility function from the DST,
which have been called F ? and F ? in the context of the presence of ontolgic
uncertainty. In the following these notions will be applied for the dataset
that exhibits categories “A”, “B”, “C”, “{A,B}”, “{A,C}”, “{B,C}” and
“{A,B,C}”, where in Table 5.4 the rounded mean (ratio scale) number of cases
based on the 100 datasets is depicted that show these categories respectively.
For illustration one can imagine that there are three parties “A”, “B” and “C”

party P A B C AB AC BC ABC
no. of cases 1934 1358 5341 93 54 1146 58

Table 5.4.: Illustration of prediction in case of ontologic uncertainty.

that can be elected and Table 5.4 shows the answers of 10000 respondents
that have been interviewed before election day. Now one is interested in the
confidence at the day of election that can be attributed to the fraction of party
“B” (questionary set Q? = B), which results from calculating the lower bound
F ?(B)

F ?(B) =
∑
P⊆B

m?(P ) = nB
n

= 1358
10000 = 0.1358

and upper bound F ?(B)

F
?(B) =

∑
P∩B 6=∅

m?(P ) = nB + nAB + nBC + nABC
n

= 1358 + 93 + 1146 + 58
10000 = 0.2655
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Hence interval

F ?(B) = [0.1358, 0.2655]

can be obtained that represents the confidence of the fraction of party “B”.
The length of this interval is fairly large compared to the one that results
if one is interested in the confidence of the fraction of party “A” (F ?(A) =
[0.1958, 0.2146]), as in the latter case the cases that reveal coarse categories,
which have to be accounted within the calculation of F ?(A), is smaller. Nev-
ertheless, the question whether these intervals and thus the underlying extent
of ontologic uncertainty has to be evaluated as rather large or not has to be
evaluated in the corresponding contentual context.
There might be cases in which the analyst assesses the resulting interval as
too inexact, wherefore it could be reasonable to discuss whether and in which
way further assumptions can be implied.
At the first glance imposing additional restrictions seems to be meaningless as
this contradicts the inherent idea of data that are coarse induced by ontologic
uncertainty. Under ontologic uncertainty data are coarse as not even the re-
spondent himself knows which answer to prefer. In this way all answers that
are consistent with the coarse answer are classified as imaginable options by
him, which all seem to be potential answers that have to be almost equiproba-
ble. Otherwise, if one category was available that outperforms the others, the
respondent would have chosen it and he would not be indecisive. This means
that all available information concerning the variable of interest has already
been involved by accounting for the coarse answers of the respondents.
Thereby, one should not underestimate the benefit that is induced by implying
the coarse data, as in comparison to a situation in which coarse answers are not
possible and respondents have to express their indecision by choosing category
“Don’t know”, substantially less information can be generated. Thus, apply-
ing the example from above concerning party “A” to this latter situation an
essentially larger interval [0.1958, 0.3292] is obtained, where it is formed by the
same lower bound and the upper bound has been calculated by involving the
fraction of category “A” as well as of all coarse categories. The improvement
of implying coarse categories instead of simply having one global category for
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indecision increases, the larger the occurence of coarse values and the larger
the number of coarse categories.

5.3.2. Suggestion of a point identifying approach in case of
prediction

Although it has been pointed out in Subsection 5.3 that all the available infor-
mation that can be revealed by the answer of the respondent is implied within
the intervals that result by applying the idea of DST, here a way will be shown
how analysts who require more precise estimations can involve additional in-
formation implied by the covariates. Thereby, it is important to emphasize
that results of these procedures have to be treated with caution for reasons as
mentioned above.
In order to get an idea about the influence of the covariates on clear decisions
concerning the variable of interest, one can estimate the coefficients based on
the subset of respondents that has already made a decision. In this way one
obtains estimators β̂dA0, β̂dA1, β̂dA2, β̂dB0, β̂dB1 and β̂dB2, where category C has been
chosen to be the reference category and d denotes “decisive”. These estima-
tors can be used to calculate estimators π̂indiA , π̂indiB and π̂indiC for the subset of
respondents with covariates xindi1 and xindi2 that is indecisive:

π̂indiA = exp(β̂A0 + xindi1 β̂A1 + xindi2 β̂A2)
1 + exp(β̂A0 + xindi1 β̂A1 + xindi2 β̂A2) + exp(β̂B0 + xindi1 β̂B1 + xindi2 β̂B2)

π̂indiB = exp(β̂B0 + xindi1 β̂B1 + xindi2 β̂B2)
1 + exp(β̂A0 + xindi1 β̂A1 + xindi2 β̂A2) + exp(β̂B0 + xindi1 β̂B1 + xindi2 β̂B2)

π̂indiC = 1− π̂indiA − π̂indiB

(5.2)
These estimators π̂indiA , π̂indiB and π̂indC will be used in order to determine sam-
pling probabilities of precise categories “A”, “B” and “C” for the indecisive
respondents.
As the estimators π̂indiA , π̂indiB and π̂indiC do not reflect the information that is gen-
erated by the coarse answer of the respondent, namely that respondents who
are indecisive between “B” and “C” will not report the answer “A”, weighted
sampling probabilities πindiA,w, πindiA,w and πindiA,w will be applied respectively, where
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index “w” denotes “weighted”. Hence, for respondents with answer “{B,C}”
weighted estimators

π̂indiA,w = 0

π̂indiB,w = π̂indiB

π̂indiB + π̂indiC

π̂indiC,w = π̂indiC

π̂indiB + π̂indiC

are calculated which are then used as these sampling probabilities πindiA,w, πindiA,w

and πindiA,w. Sampling probabilities πindiA,w, πindiB,w and πindiC,w can be derived anal-
ogously for answers “{A,B}”, “{A,C}” and “{A,B,C}”. In this way unique
categories for indecisive respondents can be obtained, which are used in order
to calculate the fraction of A-, B- and C-values if decisions have been made.
In this case if again the mean fractions based on the 100 datasets are consid-
ered, precise fractions of 0.2045 and 0.1776 result for “A” and “B” respectively,
which both correspond approximately to the center of the intervals determined
by DST. This is in accordance with the fact that information has been gener-
ated from the decisive respondents only as the coefficients have been calculated
based on this subset. Therefore, the assumption has been required that the
decisive and indecisive respondents do not differ concerning making their de-
cision.
Dependent from the underlying situation, this can be regarded as problematic,
as for instance indecisive respondents potentially decide either more rationally
as they take more time for their decision or more arbitrarily as they cannot
definitely choose a particular category. This argumentation reminds of the
discussion in the framework of imputation in case of missing data, where it is
required that the missingness does not depend on the true value. The described
procedure in order to determine point identified answers is indeed similar to
the one of classical regression imputation which calculates coefficients based on
the observed observations and uses them to impute the values of the missing
values. As imputation should only be applied under missing (completely) at
random in the context of missing data, it is required for the described proce-
dure that the probability of answering in a coarse way is not dependent on the
value which is actually given if a decision has to be made. Please note, that

158



5.3. Including aspects of the DST and implication of additional information

this requirement is different to the one that has been made in context of im-
putation under epistemic uncertainty in Subsection 4.6, as here no coarsening
mechanism is available and instead of true underlying categories the answer
that is ultimately given forms the reference.
Nevertheless, the interval obtained by DST already contains valuable informa-
tion and if the available covariates do not have any effect on the final decision,
one should rely on these intervals instead of insisting on precise results.
Although there seem to be ways how coarse data under ontologic uncertainty
can be incorporated within the model, in practice one often deals with this
problem by either forcing indecisive respondents to answer precisely or one
omits their answer. The latter case does not only lead to a loss of efficiency
because of a reduction of cases, but can also induce a substantial bias of the re-
quired estimators as the answer of these omitted indecisive respondents might
differ from the other respondents for reasons already mentioned. This is even
worse than in the framework of the imputation-like procedure proposed in this
subsection, as within this procedure at least the information of the coarse an-
swers as well as the covariates of the indecisive respondents have been involved.

In summary, accounting for ontologic uncertainty in the framework of a multi-
onomial logit model is comparably simple since coarse values already represent
the truth and thus can be involved within the model as own categories. Hence,
the only modification that results compared to the precise commonly known
multinomial logit model consists of adding further categories that represent
the coarse answers. Moreover, findings from Chapter 3 could be applied, as
the idea of including these coarse categories corresponds to the analysis on the
power set that has been suggested and additionally prediction intervals could
be obtained by means of DST.
After having made some considerations how one can account for epistemic as
well as ontologic uncertainty within a multinomial logit model in Chapter 4
and this chapter respectively, it could be interesting to compare their underly-
ing idea and to investigate the consequences if the wrong type of uncertainty
is assumed. These problems will be addressed in the next chapter.
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6. Comparison of the proposed
modelling approaches under
epistemic and ontologic
uncertainty

6.1. Comparison concerning different aspects
By reason of the inherently different conceptions of epistemic and ontologic
uncertainty (see Chapter 1), both resulting multinomial logit models that ac-
count for one of these two types respectively are completely different. In this
way both models pursue different goals, the formulations of the resulting mod-
els differ and one is concerned with different problems. Therefore, a conclusive
comparison of those two proposed modelling approaches under epistemic and
ontologic uncertainty concerning these three aspects could be insightful.
While under epistemic uncertainty it is of main interest to detect the under-
lying coarsening structure in order to be able to infer the true values of the
coarsened observations so that parameters of interest can be estimated, un-
der ontologic uncertainty coarse values already represent the truth so that the
corresponding goal consists of finding a way how these coarse values can be
incorporated within the model.
These different goals indicate that the precise multinomial logit model that
has been presented in Section 4.1 has to be modified differently for those
two underlying models. Consequently, the likelihood of the multinomial logit
model that accounts for epistemic uncertainty is described in dependence of
the parameters that characterize the coarsening q that in most cases has to be
estimated as well. Against this, the multinomial logit model under ontologic
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uncertainty extends the precise multinomial logit model by involving coarse
categories as well and thus by an enlargement of the number of categories, so
that own parameters estimators for coarse categories result. In this way, if the
easy situation of observing categories “A”, “B” and “A XOR B” is considered,
parameter βA with reference category βB as well as parameters q1 and q2 have
to be estimated within the multinomial logit model that accounts for epistemic
uncertainty, where for the case of ontologic uncertainty estimators β̂A and β̂B
with reference category β̂AB are derived.
While in the latter model no big changes compared to the precise multinomial
logit model result, so that there do not occur any problems in the course of
parameter estimation, an identification problem induced by the relation of q1

and q2 results in case of implying epistemic uncertainty. Therefore, in con-
nection with parameter estimation under epistemic uncertainty considerations
have to be made whether assumptions as CAR or more general assumptions
about a particular value of R = q2

q1
are justified, so that point identification

can still be ensured or whether partial identification has to be conducted oth-
erwise. It has been illustrated in the framework of partial identification that
even weak assumptions concerning the relation of q1 and q2 for instance in
the sense that more true “A” values are coarsened to “A or B” than true “B”
values (⇒ R < 1) can generate valuable information such that the resulting
partial identified interval can be substantially shrunk. Although under onto-
logic uncertainty there are no problems of that kind so that precise parameter
estimators result, in many situations decisions have to be made at some point
and hence one is interested in the precise values that are going to result then.
For this purpose, intervals showing the probability of occurence of special pre-
cise categories can be derived from DST, where it has been discussed whether
these intervals should be further restricted or not. One way in order to obtain
precise predictions has been suggested, but the associated problem of requiring
a situation that is described by coarse categories that are “coarse at random”
should not be forgotten in this context.
The most important differences between the multinomal logit model under
epistemic and ontologic uncertainty are summarized in Table 6.1. Thereby the
structure from above is seized again.
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epistemic uncertainty ontologic uncertainty
the goal detect coarsening incorporate coarse data into

structure the model
the model extension of precise increase of number of

likelihood by additional categories compared to
terms implying q precise model by involving

coarse categories additionaly
⇒ estimators: β̂A, q̂1, q̂2 ⇒ estimators: β̂A, β̂B
(est. of reference cat.: β̂B) (est. of reference cat.: β̂AB)

problems identification problem restriction of prediction
and interval from DST?
solutions ⇒ implying assumptions ⇒ be careful with

as CAR or PI suggested imputation-similar
procedure

Table 6.1.: Comparison of the multinomial logit model under epistemic and onto-
logic uncertainty.

6.2. The importance of dinstinguishing between
these types of uncertainty

Although by means of Section 6.1 a first valuable insight could be gained into
the importance of of distinguishing between epistemic and ontologic uncer-
tainty, as completely different models result, here some further considerations
and first illustrative analyses concerning this aspect will be shown.
In practice problems can arise, as analysts sometimes do not accept that coarse
observations that express indecision represent the truth in the sense that they
want to get an idea about the true values. In this way they analyse data that
are actually coarse because of underlying ontologic uncertainty by epistemic
methods. Therefore, it is interesting to investigate the resulting effect of the
parameter estimators that is associated by this procedure in order to have an
idea about the extent of the problem that occurs from wrongly assuming epis-
temic uncertainty.
As in many cases analysts require point identified results and hence apply
simplified assumptions, here parameter estimation under assumed epistemic
uncertainty has been conducted by implying the CAR assumption. But as in
this case the error that is induced by wrongly assuming epistemic uncertainty
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can not be separated from the one that is caused by wrongly assuming CAR,
further research should address the general case as well, in which intervals that
result from partial identification should be compared with the true values of
β.
Here the analysis has been based on the dataset that implies ontologic uncer-
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Figure 6.1.: Relative bias of β̂ in the presence of ontologic uncertainty if estimation
is conducted based on 1.) an ontologic and 2.) an epistemic approach.

tainty (see Subsection 5.2.1) and that shows three observed categories, namely
“A”, “B” and “{A, B}”. By means of the boxplots in Figure 6.1 one can note a
substantially larger relative bias of β̂A0, β̂A1, β̂A2, β̂B0, β̂B1 and β̂B2 and compa-
rably large standard deviations of the relative bias in the case that parameters
have been derived by optimizing the loglikelihood under epistemic uncertainty
and assuming CAR compared to the case that ontologic uncertainty rightly
is assumed. Thus, parameter estimators are comparably strongly biased if
the approach that accounts for epistemic uncertainty is applied, even if in
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the addressed case the number of coarse values is quite small (mean numbers:
nA = 4844.94, nB = 4364.35, nAB = 790.71). If the relative amount of coarse
observations is increased, these estimators are expected to be even worse, which
could be investigated in the framework of further research as well.
While in the model under ontologic uncertainty three categories are implied
(“A”, “B” and “{A, B}”) and category “{A, B}” has been chosen as reference
category, the model under epistemic uncertainty involves two categories only
(“A” and “B”), where category “B” has been the corresponding reference. For
this reason, effect coding has been applied, so that all estimated coefficients
can be interpreted in regard to the corresponding mean values and hence pa-
rameter estimators from both procedures can be comparable.

In summary, it has been illustrated that there are essential differences bet-
ween multinomial logit model based approaches that are designed to account
for epistemic and ontologic uncertainty. For this reason it is very important to
distinguish between those two types of uncertainty as otherwise substantially
biased results can be obtained.
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7. Summary and outlook

Although coarse data are widely present, there are still no commonly used
methods that prescribe how to analyse data of that kind. Therefore, this
thesis attended to the investigation of some approaches that address coarse
categorical data under epistemic and ontologic uncertainty. In the course of
this, in a first step considerations concerning general approaches have been
made by applying already existing approaches of other areas in this context
first, where their main ideas have been involved within a multinomial logit
model based approach afterwards.
Under epistemic uncertainty gaining information about the unknown coarsen-
ing mechanism is central. While the assumption of “coarsening at random” can
simplify a lot in this context, approaches as partial identification and sensitiv-
ity analysis can be applied more generally as they involve justified assumptions
only. Even if both latter methods are commonly known from the missing data
problem, by means of the relation between missing and coarse data their ba-
sic conceptions could be applied in the context of coarsened data. Among the
derivation of an upper bound for the coarsening parameters, further includable
contentual assumptions as information about the fraction of the coarsening pa-
rameters (e.g. R = q1

q2
) have been suggested. Although partial identification

as well as sensitivity analysis pursue the same goal and end up with similar
results, their direction of analysis differs essentially.
In the presence of ontologic uncertainty the development of a framework that
allows for coarse values is of peculiar interest, wherefore the ?-notation has
been introduced. While the idea of considering the power set has been in-
spired by some foundations of finite random set theory, some conceptions from
the Dempster-Shafer theory have been adapted in order to be able to make
predictions if decisions have been made.
After having considered these general approaches, it has been addressed how
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a categorical dependent variable that is coarse either induced by epistemic or
by ontologic uncertainty can be involved within a multinomial logit model.
In the framework of optimizing the loglikelihood that accounts for epistemic
uncertainty, an identification problem arises in case of an unknown coarsening
mechanism. Although point identified results can be obtained if the assump-
tion of CAR is involved in the estimation, analyses have shown the necessity
of its actual validity, so that possibly methods such as sensitivity analysis and
partial identification should be preferred. Here, it has been found that even
the incorporation of some weak knowledge about the relation of the coarsen-
ing parameters can essentially shrink the resulting interval. Moreover, it is
interesting that regression parameter estimators β̂1 and β̂2 have been nearly
unbiased for all conducted analyses, even in case of wrongly assuming CAR.
Alternatively, an imputation based approach can be enlightening, as coarse
data even allows to involve more information than in the case of missing data.
Against this, a basically different model could be introduced for the case of
ontologic uncertainty. This model solely differs from the commonly known
precise multinomial logit model by the fact that coarse values can be involved
in terms of own categories. By means of some conceptions of the Dempster-
Shafer theory predictions are achievable, where additional assumptions that
shrink the prediction interval should be treated with caution.
The main difference concerning these two models consists of the fact that un-
der epistemic uncertainty the coarsening structure is analysed, whereas in the
presence of ontologic uncertainty a general model has been of peculiar interest
that is able to involve the actual coarse categories.
Several worthwhile ideas for further research have been mentioned at some
points of this thesis, where some especially considerable questions will be shown
here:
Generally, one could analyse to what extent the proposed methods are adapt-
able in case that the underlying coarse variables of interest are metric instead
of categorical and apply them as far as possible for this case.
It could also be worth to concentrate on some particular extensions of the
general approaches of Chapter 2 and 3. In Subsection 2.2.4 the relation of
coarse data to the problem of misclassification has already been worked out,
so that it could be promising to investigate the applicability of some methods
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that are common in this area in the context of coarse data. In the case of on-
tologic uncertainty some ideas from random set theory and Dempster-Shafer
theory have motivated the framework for the analysis, but the theory of hints
by Kohlas and Monney [1995] could be insightful as well.
Furthermore, some generalizations concerning the modelling approaches of
Chapter 4 and 5 are conceivable. Generally one should regard the case of
coarse explanatory variables as well. Concerning the investigated case of a
coarse categorical dependent variable, one could for instance consider models
with dependent variables of a higher scale of measurement, as for instance the
cumulative or sequential threshold model.
With regard to adjustments of the proposed model under epistemic uncertainty
the case of more than two true categories and a coarsening mechanism that is
dependent on the covariates could be considered. Moreover, it could be inter-
esting to investigate how a variation of the coarsening parameters influences
the relative empirical bias, where it is expected that the bias increases with
increased values of the coarsening parameters induced by the associated addi-
tional uncertainty. In the same way, the impact of the proportion of particular
true values could be analysed in more detail as its importance with respect
to the general assymmetry of the underlying problem has been noted. In the
framework of the inclusion of the upper bounds it already has been addressed
that one should think about a way to involve full information generated by
the estimation problem. Concerning the proposed imputation based approach
one should consider the general case of more than two true categories in more
detail.
In the framework of the model that accounts for ontologic uncertainty one
could compare the resulting estimators with the ones that are obtained if
coarse categories are summarized within one category of “Don’t know”.
Although there are several starting points for further research, the importance
of the distinction between coarse data under epistemic and ontologic uncer-
tainty is obvious. As some approaches from other areas could be applied in
the context of coarse data such that there are already some methods that are
able to deal with data of that kind, the analysis of coarse data seems to be a
promising topic.
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A. Appendix

Alternative derivation of an upper bound for q1
(analogous for q2)

If one faces the basic equation (2.1) from Chapter 2, one can start finding an
upper bound by assuming P (Y = (A XOR B)|Y = B) to be zero:

P (Y = A XOR B) ≥ P (Y = (A XOR B)|Y = A) · P (Y = A)⇔
P (Y = (A XOR B))

P (Y = A) ≥ P (Y = (A XOR B)|Y = A) = q1

The quantity on the left hand side is maximal if its denominator is as small as
possible. Probability P (Y = A) is smallest if all true “A”-vaules are precisely
observed such that no coarsened observations “A XOR B” are produced by
these true values. As this restriction is only useful, whenever
P (Y = (A XOR B)) < P (Y = A) only, the following upper bound q1 can be
derived:

q1 =
{

P (Y=(A XOR B))
P (Y=A) , if P (Y = (A XOR B)) < P (Y = A)

1, else
(A.1)

If one is concerned with large sample sizes, probabilities P (Y = AB) and
P (Y = A) can be approximated by their empirical estimators (if sampling
variability is ignored), namely nAB

n
and nA

n
. Thus, one obtains:

q̂1 =
{

nAB
nA

, if nAB < nA
1, else

As the upper bound derived in Chapter 2 is more general in the sense that it
is always smaller than 1, the upper bound of equation (A.1) has been shown
in the appendix only.
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Analysis of relative empirical bias of q̂ in case of
CAR (q1 = q2 = q, here: q = 0.3)
In this thesis the results concerning the relative empirical bias has been shown
for the estimators of main interest only, namely π̂A in model 1 and β̂0, β̂1 and
β̂2 in model 2. In case of CAR parameter q has to be estimated, where the
evaluation of the resulting estimator will be shown here.
For illustration observed data that has been generated by q1 = q2 = q = 0.3 has
been used. Truely assuming CAR, the following result concerning the relative
empirical bias of q̂ can be obtained differentiated by model 1 and model 2:

Model 1
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Relative bias of q̂ in case 1c

Figure A.1.: Boxplot showing the relative bias of q̂ for the model without covariates

Minimum and maximum relative bias of -0.03123 and 0.03137 respectively
as well as a median of -0.00046 show q̂ as a (nearly) unbiased estimator (see
Figure A.1). The standard deviation of 0.01366265, which can also be as-
cribed to the large sample size of n = 10000. Thus, q̂ can be considered as a
quite good estimator.
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Figure A.2.: Boxplot showing the relative bias of q̂ for the model with covariates

Model 2

The minimum and maximum of -0.037960 and 0.0279100, the median of
0.0001997 and the underlying standard deviation of 0.01525166 classify q̂ as
a quite good estimator if CAR is valid indeed (see Figure A.2).
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B. Electronic appendix

The results of the analyses that have been shown in this thesis are based on
the R-Code one can find on the attached CD-ROM. A brief summary of the
files that are contained within the folder “R-Code”is given here:

• R-Code epistemic

– 1_Creating Datasets.R: data generating process (dgp) for model 1 and
model 2

– 2_A1_Analyse.R: simple analyses for model 1 based onM = 10 datasets
only

– 3_A1_M=100_Analyse.R: analyses for model 1 based onM = 100 datasets
(results have been shown here)

– 4_A2_M=100_Analyse.R: analyses for model 2 based onM = 100 datasets

– 5_Imputation.R: Multiple imputation by means of observed variable
Ycoarse11 (=CAR) and Ycoarse13 (= not CAR)

• R-Code ontologic

– 1_Dataset_ont: dgp for model 1? and model 2? (two situations of data:
3 and 7 categories)

– 2_B_Analysen: analyses (general analysis, prediction by means of DST,
additional restrictions)

– 3_B_Comparison_large_nAB: Assuming ontologic uncertainty and esti-
mation by means of epistemic approach (large nAB)

– 4_B_Comparison_small_nAB: Assuming ontologic uncertainty and esti-
mation by means of epistemic approach (small nAB)

Additionaly, the CD-ROM shows a folder “graphics” containing all generated
graphics, a folder “saved objects” containing all saved .RDATA-files and a digital
version of this thesis.
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