Towards a Cautious Modelling of Missing Data in Small Area Estimation

ISIPTA '17, Lugano

Julia Plass ${ }^{1}$, Aziz Omar ${ }^{1,2}$, Thomas Augustin ${ }^{1}$
${ }^{1}$ Department of Statistics, Ludwig-Maximilians University and
${ }^{2}$ Department of Mathematics, Insurance and Appl. Statistics, Helwan University

$$
11^{\text {th }} \text { of July } 2017
$$

Our team and aim

Thomas Augustin Julia Plass

Aziz Omar

Our team and aim

Thomas Augustin Julia Plass

Aziz Omar

Our team and aim

Thomas Augustin Julia Plass

Aziz Omar

Our team and aim

Thomas Augustin Julia Plass

Aziz Omar

- Existing approaches for dealing with nonresponse in SAE are based on strong assumptions on the missingness process
- Such assumptions are usually not testable, and wrongly imposing them may lead to biased results.
(Manski, 2003, Partial Identification of Probability Distributions, Jaeger, 2006, ECML,...)

What's the problem? $\Rightarrow 1$ Small Area Estimation (SAE)

- Population with N individuals

What's the problem? $\Rightarrow 1$. Small Area Estimation (SAE)

- Population with N individuals
- M areas, each contains N_{i} individuals, $i=1, \ldots, M$

What's the problem? $\Rightarrow 1$. Small Area Estimation (SAE)

- Population with N individuals
- M areas, each contains N_{i} individuals, $i=1, \ldots, M$
- Of interest: Area-specific mean \bar{Y}_{i}

- Population with N individuals
- M areas, each contains N_{i} individuals, $i=1, \ldots, M$
- Of interest:

Area-specific mean \bar{Y}_{i}

- Problem:

For each area, only sample s_{i} with small sample size n_{i} available
\Rightarrow Using auxiliary variables (covariates) X_{1}, \ldots, X_{k}
\Rightarrow "borrowing strength"

What's the problem? $\Rightarrow 1$. Small Area Estimation (SAE)

- Binary variable of interest
\Rightarrow probability that Y_{i} is equal to 1
$:=\pi_{i}$ (poverty rate)

- Binary variable of interest \Rightarrow probability that Y_{i} is equal to 1
$:=\pi_{i}$ (poverty rate)
- $1 / w_{i j}$ is the probability that individual j in area i is selected in s_{i}
- Sample values $y_{i j}$ known for $j \in s_{i}$
- Sample data from German General Social Survey (GESIS Leibniz Institute for the Social Sciences, 2016), $y_{i j}=1$: 'poor', $y_{i j}=0$: 'rich'

- Binary covariates (Abitur, sex)
- Cross classifications of the covariates
\Rightarrow subgroup $g, g=1, \ldots, v$
- Known absolute frequencies $N_{i}^{[g]}$ Federal Statistical Office's data report:

- Binary covariates (Abitur, sex)
- Cross classifications of the covariates
\Rightarrow subgroup $g, g=1, \ldots, v$
- Known absolute frequencies $N_{i}^{[g]}$ Federal Statistical Office's data report:

- Joint information about $x_{i j}$ and $y_{i j}$ \Rightarrow We know $y_{i j}$ for $j \in s_{i}^{[g]}$

What's the problem? $\Rightarrow 2$. Missing data

- some sample values $y_{i j}$ are missing
- $s_{i}^{[g]}$ is partitioned into $s_{i, o b s}^{[g]}$ and $s_{i, \text { mis }}^{[g]}$

Cautious Approach for Dealing with Nonresponse

(ISIPTA '15, Plass, Augustin, Cattaneo, Schollmeyer)

- An observation model is determined by the missingness parameters $q_{n a \mid y}^{[g]}$ (:= probability to refuse the answer ("na"), given subgroup g and the true value y)
- Maximizing the log-likelihood

$$
\begin{aligned}
& \ell\left(\pi^{[g]}, q_{n a \mid 0}^{[g]}, q_{n a \mid 1}^{[g]}\right)=n_{1}^{[g]}\left(\ln \left(\pi^{[g]}\right)+\ln \left(1-q_{n a \mid 1}^{[g]}\right)\right) \\
& +n_{0}^{[g]}\left(\ln \left(1-\pi^{[g]}\right)+\ln \left(1-q_{n a \mid 0}^{[g]}\right)\right)+n_{n a}^{[g]}\left(\ln \left(\pi^{[g]} q_{n a \mid 1}^{[g]}+\left(1-\pi^{[g]}\right) q_{n a \mid 0}^{[g]}\right)\right)
\end{aligned}
$$

gives set-valued estimator.

- Resulting bounds of $\hat{\pi}^{[g]}$ under no assumptions about $q_{\text {na|y }}^{[g]}$:

$$
\underline{\hat{\pi}}^{[g]}=\frac{n_{1}^{[g]}}{n_{n a}^{[g]}+n_{1}^{[g]}+n_{0}^{[g]}} \quad \text { and } \quad \overline{\hat{\pi}}^{[g]}=\frac{n_{1}^{[g]}+n_{n a}^{[g]}}{n_{n a}^{[g]}+n_{1}^{[g]}+n_{0}^{[g]}} \text {. }
$$

Cautious Approach for Dealing with Nonresponse

(ISIPTA '15, Plass, Augustin, Cattaneo, Schollmeyer)

- Incorporate assumptions by missingness ratio (Nordheim, 1984)

$$
R=q_{n a \mid 1}^{[g]} / q_{n a \mid 0}^{[g]}, \quad \text { with } R \in \mathcal{R} \subseteq \mathbb{R}_{0}^{+}
$$

- Specific values of R point-identify $\pi^{[g]}$
- Partial assumptions, expressed by $\mathcal{R}=[\underline{R}, \bar{R}]$, refine the result without any missingness assumptions ($R \in[0,1]$)
\Rightarrow Bounds for $\hat{\pi}^{[g], \mathcal{R}}, \quad \hat{q}_{n a \mid 0}^{[g], \mathcal{R}}$ and $\hat{q}_{n a \mid 1}^{[g], \mathcal{R}}$ obtained under \underline{R} and \bar{R}

The synthetic estimator (without nonresponse)

- Horvitz-Thompson (HT) estimator (Horvitz and Thompson, 1952, JASA)

$$
\hat{\pi}_{H T, i}=\frac{1}{N_{i}} \sum_{j \in s_{i}} w_{i j} y_{i j}
$$

- The synthetic estimator (González, 1973, JASA)

$$
\hat{\pi}_{S Y N} \equiv \hat{\pi}_{S Y N, i}=\frac{1}{N} \sum_{i=1}^{M} \sum_{j \in s_{i}} w_{i j} y_{i j}=\frac{1}{N} \sum_{i=1}^{M} N_{i} \cdot \hat{\pi}_{H T, i}
$$

Cautious synthetic estimator

- No assumptions:

$$
\begin{aligned}
& \hat{\pi}_{S Y N}=\frac{1}{N} \sum_{i=1}^{M}\left(\sum_{j \in s_{i}, o b s} w_{i j} y_{i j}+\sum_{j \in s_{i, m i s}} w_{i j} \cdot y_{i j}\right) \\
& \hat{\underline{\pi}}_{S Y N}=\ldots\left(\ldots+\sum_{j \in s_{i, m i s}} w_{i j} \cdot 0\right), \overline{\hat{\pi}}_{S Y N}=\ldots\left(\ldots+\sum_{j \in s_{i, m i s}} w_{i j} \cdot 1\right)
\end{aligned}
$$

Cautious synthetic estimator

- No assumptions:

$$
\begin{aligned}
& \hat{\pi}_{S Y N}=\frac{1}{N} \sum_{i=1}^{M}\left(\sum_{j \in s_{i}, \text { obs }} w_{i j} y_{i j}+\sum_{j \in s_{i, m i s}} w_{i j} \cdot y_{i j}\right) \\
& \hat{\underline{\pi}}_{S Y N}=\ldots\left(\ldots+\sum_{j \in s_{i, m i s}} w_{i j} \cdot 0\right), \overline{\hat{\pi}}_{S Y N}=\ldots\left(\ldots+\sum_{j \in s_{i, m i s}} w_{i j} \cdot 1\right)
\end{aligned}
$$

- Partial assumptions:

$$
\hat{\underline{\pi}}_{S Y N}^{\mathcal{R}}=\frac{1}{N} \sum_{i=1}^{M}(\sum_{j \in s_{i, o b s}} w_{i j} y_{i j}+\underbrace{\hat{\underline{q}}_{n a \mid 1 i}^{\mathcal{R}} \cdot \hat{\underline{\pi}}_{i}^{\mathcal{R}} \cdot \sum_{j \in s_{i}} w_{i j}})
$$

smallest est. weighted number of nonrespondents with $y_{i j}=1$, under the assumption in focus.

Analogously, $\overline{\hat{\pi}}_{S Y N}^{\mathcal{R}}$ is achieved by using $\overline{\hat{q}}_{\text {nal }}^{\mathcal{R}}$ and $\overline{\hat{\pi}}_{i}^{\mathcal{R}}$.

The LGREG estimator (without nonresponse).

(Lehtonen and Veijanen, 1998, Surv. Methodol.)

- ... in its representation how we need it:

$$
\begin{aligned}
& \hat{\pi}_{L G R E G, i}=\sum_{g=1}^{v}(\overbrace{\sum_{j \in s_{i}^{[g]}} w_{i j} y_{i j}}^{\text {HT-part }}+\overbrace{\hat{\pi}^{[g]}\left(N_{i}^{[g]}-\sum_{j \in s_{i}^{[g]}} w_{i j}\right)}^{\text {correction term }}) / N_{i} \\
& \text { with } \hat{\pi}^{[g]}=\sum_{i=1}^{M} \sum_{j \in s_{i}^{[g]}} \frac{y_{i j}}{[g]}
\end{aligned}
$$

- The correction term accounts for under/overrepresentation of certain constellations of covariates in the sample
- In most cases: $w_{i j}=w_{i}, \forall j=1, \ldots, n_{i}, i=1, \ldots, M$.

No assumptions: Cautious LGREG estimator
Breaking the summation over all areas into a term for area i^{*} of interest and areas $i \neq i^{*}$ leads to

$$
\begin{aligned}
& \sum_{g=1}^{v}\left(\left(\frac{1}{n[g]} \sum_{\substack{i=1 \\
i \neq i^{*}}}^{M}\left(\sum_{j \in s_{i, o b s}^{[g]}} y_{i j}+\sum_{j \in s_{i, m i s}^{[g]}} y_{i j}\right)\right)\left(N_{i^{*}}^{[g]}-n_{i^{*}}^{[g]} w_{i^{*}}\right)\right. \\
& \left.+\frac{1}{n^{[g]}}\left(\sum_{\substack{ \\
j \in s_{i^{*}, o b s}^{[g]}}} y_{i^{*} j}+\sum_{j \in s_{i^{*}, m i s}^{[g]}} y_{i^{*} j}\right)\left(N_{i^{*}}^{[g]}-w_{i^{*}}\left(n_{i^{*}}^{[g]}+n^{[g]}\right)\right)\right) / N_{i^{*}}
\end{aligned}
$$

No assumptions: Cautious LGREG estimator

Breaking the summation over all areas into a term for area i^{*} of interest and areas $i \neq i^{*}$ leads to

$$
\begin{aligned}
& \sum_{g=1}^{v}\left(\left(\frac{1}{n[g]} \sum_{\substack{i=1 \\
i \neq i^{*}}}^{M}\left(\sum_{j \in s_{i, o b s}^{[g]}} y_{i j}+\sum_{j \in s_{i, m i s}^{[g]}} y_{i j}\right)\right)\left(N_{i^{*}}^{[g]}-n_{i^{*}}^{[g]} w_{i^{*}}\right)\right. \\
& \left.+\frac{1}{n^{[g]}}\left(\sum_{\substack{\left[g s_{i^{*}, o b s}^{[g]}\right.}} y_{i^{*} j}+\sum_{j \in s_{i^{*}, m i s}^{[g]}} y_{i^{*} j}\right)\left(N_{i^{*}}^{[g]}-w_{i^{*}}\left(n_{i^{*}}^{[g]}+n^{[g]}\right)\right)\right) / N_{i^{*}}
\end{aligned}
$$

To determine $\underline{\underline{\tilde{T}}}_{\text {LGREG }, i^{*}}$:

	$N_{i^{*}}^{[g]} \geq w_{i^{*}}\left(n_{i *}^{[g]}+n^{[g]}\right)$	$N_{i^{*}}^{[g]}<W_{i *}\left(n_{i *}^{[g]}+n^{[g]}\right)$
$N_{i^{*}}^{[g]} \geq n_{i *}^{[g]} w_{i^{*}}$	$y_{i j}=0, \forall j \in s_{i, m i s}$	$y_{i j}= \begin{cases}0 & \forall j \in s_{i, m i s}, i \neq i^{*} \\ 1 & \forall j \in s_{i, m i s}, i=i^{*}\end{cases}$
$N_{i^{*}}^{[g]}<n_{i *}^{[g]} w_{i^{*}}$	$y_{i j}= \begin{cases}1 & \forall j \in s_{i, m i s}, i \neq i^{*} \\ 0 & \forall j \in s_{i, m i s}, i=i^{*}\end{cases}$	$y_{i j}=1, \forall j \in s_{i, m i s}$

1.) Regard $\hat{\pi}_{L G R E G, i^{*}}$ as a combination of two estimators:
\Rightarrow a global one that borrows strength and
\Rightarrow a specific one associated to area i^{*}.
2.) Maximize the two log-likelihoods under \underline{R} and \bar{R} :

- $\ell\left(\pi^{[g], \mathcal{R}}, q_{n a \mid 0}^{[g], \mathcal{R}}, q_{n a \mid 1}^{[g], \mathcal{R}}\right)$ and
- $\ell\left(\pi_{i^{*}}^{[g], \mathcal{R}}, q_{n a \mid 0 i^{*}}^{[g], \mathcal{R}}, q_{n a \mid 1 i^{*}}^{[g] \mid \mathcal{R}}\right)$
3.) Include the estimators that minimize
$\sum_{g=1}^{v}(\overbrace{\sum_{j \in s_{i^{*}, o b s}^{[g]}} w_{i^{*}} y_{i^{*} j}+\hat{a}_{n a \mid 1 i^{*}}^{[g], \mathcal{R}} \hat{\pi}_{i^{*}}^{[g], \mathcal{R}} \sum_{j \in s_{i *}^{[g]}} w_{i^{*} j}}^{\text {HT-part }}+\overbrace{\hat{\pi}^{[g], \mathcal{R}}\left(N_{i^{*}}^{[g]}-n_{i^{*}}^{[g]} w_{i^{*}}\right)}^{\text {correction term }}) / N_{i^{*}}$
\Rightarrow Since $\pi^{[g]}$ and $\pi_{i^{*}}^{[g]}$ are estimated distinctively, interrelation between them should be considered.
- Intervals for the synthetic estimator

no assumption	$\mathcal{R}=[0,1]$
$[0.167,0.300]$	$[0.167,0.193]$

- Intervals for the LGREG estimator

Federal state	no assumption	$\mathcal{R}=[0,1]$
BW	$[0.129,0.366]$	$[0.129,0.210]$
BY	$[0.088,0.233]$	$[0.088,0.133]$
HB	$[0.077,0.405]$	$[0.115,0.193]$

- Optimization of one overall likelihood, instead of two, to obtain the cautious LGREG-estimator
- Comparison of the magnitude of both principally differing kinds of uncertainty induced by the two problems in focus

