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Abstract
The present paper is concerned with parameter estimation for categorical data
under epistemic data imprecision, where for a part of the data only coarse(ned)
versions of the true values are observable. For different observation models
formalizing the information available on the coarsening process, we derive
the (typically set-valued) maximum likelihood estimators of the underlying
distributions. We discuss the homogeneous case of independent and iden-
tically distributed variables and present, by investigating logistic regression
under a categorical covariate, some first steps towards statistical modelling
of heterogenous multivariate data in this context. We start with the impre-
cise point estimator under an observation model describing the coarsening
process without any further assumptions. Then we determine several sensi-
tivity parameters that allow the refinement of the estimators in the presence
of auxiliary information.
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1 The problem and its background
A frequent challenge in statistical modelling is data imprecision, where not all data
are observed in the resolution intended in the subject matter context. In this pa-
per, we utilize imprecise probability methodology for proper handling of epistemic
data imprecision, also called coarse(ned) data. For categorical data as considered
throughout here, this means that there exists a true precise value y of a generic vari-
able Y of material interest taking values in a finite sample space ΩY = {1, . . . , K},
but we may only observe a non-singleton set y containing y.1 Missing data are in-
cluded in this setting as the prominent special case where the whole sample space
is observed.
Coarse categorical data emerge most naturally in a huge variety of applications.
Missing data, for instance, arise directly by design in observational studies on treat-
ment effects,2 and unit non-response is quite frequent in surveys, in particular as
refusals to answer sensitive questions. Typical examples of not missing but still
coarse data include the numerous data sets where coarsening is deliberately applied
as an anonymization technique (see, e.g., [7]), forecasts from opinion polls with re-
spondents still undecided between some alternatives,3 matched data sets with not
completely identical categories, secondary data where the original coding produced
categories that turn out to be not fine enough and, to give last but not least also
a technical example, reliability analysis of a system whose components are tested
separately prior to assembly [23].
Trapped in the framework of precise probabilities, traditional statistical methods are
forced to neglect data imprecision or to impose quite strong, empirically untestable
assumptions on the underlying coarsening process. Thus, except the very rare cases
where the external information on the subject matter problem is rich enough to
justify such an extent of precision of the modelling of the coarsening process, the
price of the (seemingly) precise result is a substantial debilitation of the reliability
of the conclusions drawn.
Against this background, set-valued approaches, aiming at a proper reflection of
the available information, have been gathering momentum, also becoming a popular
topic at the ISIPTA symposia ([4, 19, 12, 25, 26], to name just a few). In different
areas of application concepts of cautious data completion emerged, where a classical
procedure is extended by considering the set of all virtual precise observations in
accordance with the coarse data (see, e.g., the exposition in [2], and the references

1Epistemic data imprecision has to be distinguished from an ontic view of sets, where the set
is understood as holistic entity (see, in particular, [6], and [17] for an application in a regression
setting.)

2See, for instance, the instructive case study [20].
3This problem is addressed e.g. in [17], where the here considered epistemic view is resolved in

the ontic view.
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therein). General investigations of coarse data from an imprecise probability-based
Bayesian point of view include [5], [28]. Linear regression under metrical coarse data
(interval data) is vividly discussed in the partial identification literature in the spirit
of [14] (see also, e.g, [19], and the references therein). Mainly focusing on missing
data, [27] suggest a framework for a systematic sensitivity analysis for statistical
modelling under epistemic data imprecision. [4] introduces a profile likelihood ap-
proach for coarse data (for missing data see also [29]) and derive from it an uniform
framework for robust regression analysis with imprecise data.
This paper will develop another likelihood-based approach.4 It is strongly influenced
by the methodology of partial identification, dealing with the tradeoff between in-
formation and credibility by first using the empirical evidence only, i.e. using infor-
mation implied by the data and including only those assumptions about which there
exists a common consensus concerning their validity (e.g., [14, 21, 15]). Sensitivity
analysis pursues the same goal as partial identification, but the direction of proceed-
ing differs. While partial identification starts from total uncertainty and gradually
adds further assumptions, in the framework of sensitivity analysis the collection of
all plausible point identified results from successively relaxed assumptions is consid-
ered. Thereby, the analysis is framed by a sensitivity parameter, a parameter that
is not identified but given this parameter the parameter of interest is [27].
Our paper is structured as follows. In the next section we fix the notation used and
formulate the problem setting more exactly for the cases considered in this paper:
independent and identically distributed (i.i.d.) variables and the logistic regression
model with a categorical covariate. The crucial technical argument underlying our
paper to introduce an observation model and utilize invariance properties of the
likelihood is developed in general terms in Section 3. In Section 4 we derive and dis-
cuss the set-valued estimators arising from a fully non-committal observation model,
and we then turn to settings where this interval is narrowed when we benefit from
the presence of additional auxiliary information. For technically handling this by
sensitivity parameters, it is helpful to go to the other extreme, investigating point
identifying additional assumptions in some special cases. For the homogeneous situ-

4In statistics, maximum likelihood estimation is a general procedure to derive estimators for
the parameters of a statistical model. The likelihood function reinterprets the probability of
observations in dependence on a parameter as describing the plausibility of the parameters given
the data, and thus the maximum likelihood estimator selects that parameter value (or in the
more general setting those parameter values) maximizing the likelihood function and in this way
providing the most plausible explanation for the data (e.g., [3, § 6.3, 7.2.2]). The methodology is
strictly observation-based (, i.e. without the need of specifying any prior distribution), conditional
with many appealing frequentist properties (including asymptotic efficiency of the estimators) and
generally applicable. (For regression models, like the logistic regression model considered here, it
can be shown that, under the regularity condition that the marginal distribution of the covariates
does not depend on the parameters of interest, it is sufficient to build the likelihood analysis on
the conditional distribution of the outcome given the covariates.)
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ation, after studying known coarsening in Section 5.1, we focus on the coarsening at
random (CAR) assumption and illustrate the disastrous behaviour of the resulting
point estimator when CAR is inappropriate (Section 5.2). Then in Section 5.3 we
consider an extension of CAR and determine the corresponding ratio of coarsening
probabilities as a sensitivity parameter. For the logistic regression case in Section 5.4
we work out that there is, as an alternative to CAR and its extensions, a further
point identifying modelling assumption, which we call subgroup independent coars-
ening. Its generalization again can serve as a sensitivity parameter (Section 5.5).
These sensitivity parameters frame a systematic sensitivity analysis, resulting in
imprecise point estimators reflecting justifiable auxiliary information.

2 The basic setting
Let Y1, . . . , Yn be a random sample of a categorical response variable of interest Y
with realizations y1, . . . , yn in sample space ΩY = {1, . . . , j, . . . ,K}. Problemati-
cally, some of those realizations are not known in a precise form, such that only
realizations5

y1, . . . , yn of a sample Y1, . . . ,Yn of a random variable Y within sample
space ΩY = P(ΩY )\∅ can be observed, where P denotes the power set. All possible
categories of Y represent singletons in (ΩY , P(ΩY)) with corresponding probability
mass functions pyi

= P (Yi = yi) (i = 1, . . . , n). But as we are interested in the
random variables Y1, . . . , Yn, our basic goal consists of gathering information about
the individual probabilities πi1 = P (Yi = 1), . . . , πiK = P (Yi = K).
We discuss the homogeneous case (i.i.d. case), in biometrical terms prevalence esti-
mation, as well as situations with one precise categorical covariate X, in biometrical
terms called treatment, with sample space ΩX , being available. Here we confine
ourselves to the case of one categorical covariate only, as this is technically equiva-
lent to any finite set of categorical covariates. While in the i.i.d. case probabilities
πi1 = π1, . . . , πiK = πK are assumed to be independent of individual i, in the case
with one covariate the probabilities πi1 = P (Yi = 1|Xi = xi) = πxi1, . . . , πiK =
P (Yi = K|Xi = xi) = πxiK are influenced by individual i through the corresponding
values of the covariate Xi. One of most generally applied models is the multinomial
logit model. It describes the dependence of a categorical dependent variable Y of
nominal scale on covariates X by

πij = P (Yi = j|xi) = exp(βj0 + xTi βj)
1 +∑K−1

s=1 exp(βs0 + xTi βs)
(1)

5We assume throughout the paper that the coarsening process is error-free, in the sense that
yi ⊇ yi, i = 1, . . . , n.
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Y
A B AB

X 0 n0A n0B n0AB n0
1 n1A n1B n1AB n1

nA nB nAB n

Table 1: Contingency table that introduces used notation.

i = 1, . . . , n for categories j = 1, . . . , K − 1 and by

πiK = 1− πi1 − . . .− πiK−1 = 1
1 +∑K−1

s=1 exp(βs0 + xTi βs)
(2)

with category specific regression coefficients, that is βj = (βj1, . . . , βjm)T referring
to m covariates and intercept βj0. As we here address the case of one categorical
covariate Xi ∈ {1, . . . , c}, dummy coded variables Xi1, . . . , Xim with m = c− 1 are
included into the model. Equivalently, the multinomial logit model can be written
as

log πij
πiK

= βj0 + xTi βj, (3)

where log denotes the natural logarithm.
It is common to summarize categorical data in contingency tables by reporting the
counts for possible outcomes, where the covariates X are supposed to be in the rows
(e.g., [24]). Thus, in our case the contingency table in Table 1 will be addressed.
The number of observations with Y = y and treatment group X = x is denoted
by nxy, where n0 = n0A + n0B + n0AB, n1 = n1A + n1B + n1AB, nA = n0A + n1A,
nB = n0B + n1B and nAB = n0AB + n1AB.
Example: In order to illustrate our results we consider the contingency table of
Table 2 as a running example. It shows data from the German panel study “Labor
Market and Social Security” (PASS, here wave 1, 2006/2007, [22]), where partial in-
come knowledge (variable HEK0700; “na” denotes that no suitable answer has been
reported) as well as the receipt of the so-called Unemployment Benefit II (variable
alg2abez; here denoted by UBII) are collected.

3 Sketch of the basic argument
This paper, similar to [4, 29], relies on the likelihood as the fundamental concept to
derive parameter estimators under epistemic data imprecision, but looks at it from
a different angle. In order to support the appropriate incorporation of the available
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income
< 1000e ≥ 1000e na

UBII yes 130 114 75 319
no 108 721 263 1092

238 835 338 1411

Table 2: Contingency table to illustrate some results by means of the PASS data.

information provided by the data and the background knowledge, we explicitly for-
mulate, and utilize, an observation model relating the observable level and the ideal
level. The observation model is a set Q of (precise) coarsening probabilities,6 and
thus the medium to specify carefully and flexibly the available information about the
coarsening process. By virtue of the theorem of total probability, the elements of Q
relate the probability distribution of the imprecise observation Y to the distribution
of the underlying latent variable Y (and, if present, certain covariates).
Parametrizing the distributions, again possibly after splitting with respect to certain
covariate values, let ϑ (the various p’s in the following sections) and η (the various
π’s below) be the parameters determining the distribution of Y and Y , respectively,
and let ζ be the parameter characterising the elements of Q (the various q’s, possibly
constrained by the specified constraints:

(
qy|y := P (Y = y|Y = y)

)
(y∈ΩY ,y∈ΩY )

in the
i.i.d. case, while in the regression context the coarsening mechanisms generally also
depend on the values of Xi, i.e., (qy|xy = P (Y = y|X = x, Y = y)(y∈ΩY ,y∈ΩY ,x∈ΩX)
has to be considered.
Then we can describe the relationship between γ := (ηT , ζT )T (with domain Γ) and
ϑ (with domain Θ) via the mapping

Φ(·) : Γ → Θ
γ 7→ ϑ .

Figure 1 shows this mapping Φ(·) and all parameters included.
Most important in our context is the invariance of the likelihood under parameter
transformations; evaluating the likelihood in terms of γ and in terms of ϑ = Φ(γ) is
equivalent in the situations considered here. Our random set modelling will allow us
to determine the ML-estimator ϑ̂ of ϑ, which moreover, apart from trivial extreme
cases, can be shown to be single-valued. Then the possibly set-valued maximum-
likelihood estimator for γ is obtained as

Γ̂ =
{
γ
∣∣∣Φ(γ) = ϑ̂

}
. (4)

6More precisely, Q is a generalized transition kernel, consisting of credal sets indexed by the
values of Y .
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Thus, adapting the concept of maximum likelihood estimators to a persistent set-
based perspective and to random set-based situations, we achieve a general and
powerful framework for handling coarse categorical data via the mapping Φ(·). If
Φ(·) is injective, then Γ̂ is a singleton as well, and γ so-to-say empirically point
identified; otherwise Γ̂ is set-valued in the literal sense and γ empirically partially
identified.

Figure 1: Observable and latent variable and the corresponding parameters.

The dimension of the parameter vectors η and ζ increases substantially with the
cardinality of ΩY and ΩX . In the i.i.d. case m = (∑|ΩY |

z=1

(
|ΩY |
z

)
· z)−1 or equivalently

m = K · 2K−1 − 1 parameters have to be estimated, where in the case with one
covariate this number even increases to |ΩX | ·m. In this way, in the i.i.d. case with
ΩY = {1, 2, 3} and corresponding ΩY = {1, 2, 3, 12, 13, 23, 123}, where for
instance “12” denotes “either catgory 1 or category 2”, already eleven parameters,
that is π1, π2, q12|1, q12|2, q13|1, q13|3, q23|2, q23|3, q123|1, q123|2 and q123|3, have to be
estimated.
Thus, for reasons of conciseness of the presentation, we mainly confine detailed
explanations and derivations on the special, yet still representative cases of a binary
response variable Y with sample space ΩY = {A, B} and observations within ΩY =
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{A, B, AB},7 as well as a binary precise categorical covariate X with values 0 and
1.8 In this case, the underlying model expressed in Equation (1) and (2) is called
logit model. Nevertheless, the main results not only will be shown for this situation,
where coarsening corresponds to missingness, but also in a general way.

4 Maximum likelihood estimation for coarse cat-
egorical data without additional information

In this section we derive the maximum likelihood estimators for the case where
no additional information on the coarsening process is available, i.e. there are no
constraints on the elements ofQ. A crucial step is to rely on the random set view that
treats data imprecision as a change of the sample space with corresponding random
variables Yi, i = 1, . . . , n, which then lead to multinomially distributed variables
with parameter ϑ for the counts based on the new sample space. According to the
argumentation in Section 3, the resulting likelihood in ϑ, and the estimator derived
from maximizing it, will then be related to the parameters of the distribution of the
latent variable (and the observation model). As discussed at the end of the previous
section, we explain the construction in some detail for the representative special
cases with ΩY = {A, B} (and ΩX = {0, 1}) and then report the general results.

4.1 Estimation in the i.i.d. case
Considering categorical i.i.d. random variables Y1, . . . ,Yn with realizations y1, . . . , yn
in the sample space ΩY = {A, B, AB}, we obtain the following likelihood function
for the parameter ϑ = (pA, pB)T given the data, summarized by the counts nA, nB
and nAB (with pAB = 1− pA − pB):9

L(ϑ) = L(pA, pB) = L(pA, pB||y1, . . . , yn) = P (y1, . . . , yn||pA, pB) (5)
∝ pnA

A · p
nB
B · p

nAB
AB .

For n = nA + nB + nAB > 0 this likelihood is uniquely maximized by the corre-
sponding relative frequencies (see [18]),

p̂
(MLE)
A = nA

n
, p̂

(MLE)
B = nB

n
, (6)

7For ease of presentation we denote in the binary case the different categories by A, B, and AB
instead of numbers and sets of numbers.

8All results can be transferred straightforward to cases of covariates with more than two cate-
gories by including more dummy variables of that kind.

9In the following, we will use the abbreviated notation of the likelihood without referring to the
data.
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and thus p̂(MLE)
AB = 1− p̂(MLE)

A − p̂(MLE)
B = nAB

n
.

Essentially, we are interested in the parameter η = πA determining the probabilities
of the true, but unobserved variable Y being equal to particular categories and
the associated maximum likelihood estimator. Those probabilities of interest, in
our case πA and πB = 1 − πA, can be related with probabilities pA, pB and pAB
corresponding to the observable variables by

pA = (1− qAB|A) · πA , (7)
pB = (1− qAB|B) · (1− πA) ,

where pAB = qAB|A · πA + qAB|B · (1− πA) results from the law of total probability.
This means that the likelihood in terms of ϑ in Equation (5) and in terms of γ =
(πA, qAB|A, qAB|B)T , i.e.
L(γ) = L(πA, qAB|A, qAB|B) ∝ [(1− qAB|A) · πA]nA · [(1− qAB|B) · (1− πA)]nB (8)

· [qAB|A · πA + qAB|B · (1− πA)]nAB ,

coincide, indeed.
By the invariance of the likelihood under parameter transformations, Equations (6)
and (7) can be combined, resulting in the following system of equations:

(1− q̂AB|A) · π̂A = nA
n

= p̂
(MLE)
A ,

(1− q̂AB|B) · (1− π̂A) = nB
n

= p̂
(MLE)
B , (9)

q̂AB|A · π̂A + q̂AB|B · (1− π̂A) = nAB
n

= p̂
(MLE)
AB .

For reasons of redundancy we can leave the third equation out of consideration. As
there typically are multiple triples γ̂ = (π̂A, q̂AB|A, q̂AB|B)T that lead to the same
values of ϑ̂ = (p̂(MLE)

A , p̂
(MLE)
B )T (cf. Figure 2), the mapping Φ : [0, 1]3 → [0, 1]2

with

Φ

 πA
qAB|A
qAB|B

=
(

πA · (1− qAB|A)
(1− πA) · (1− qAB|B)

)
=
(
pA
pB

)
(10)

(cf. Figure 1) connecting both parametrizations in general is not injective. Thus

Γ̂ =
{
γ
∣∣∣Φ(γ) = ϑ̂

}
(11)

is set-valued in the literal sense. Points in this set are constrained through the rela-
tionships in (9), and thus Γ̂ is not a cuboid in [0, 1]3. Building the one dimensional
projections, set-valued estimators of the single components of γ are obtained via

π̂A ∈
[
nA
n
,
nA + nAB

n

]
, q̂AB|A ∈

[
0, nAB

nA + nAB

]
and (12)

q̂AB|B ∈
[
0, nAB

nB + nAB

]
.
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Figure 2: Illustration of the estimation problem in the i.i.d. case.

Extending the discussion here to the general case of ΩY = {1, . . . , K} and the
corresponding ΩY , the estimators in Equations (12) generalize to

π̂y∈
[
n{y}
n
,

∑
y3y ny

n

]
, q̂y|y∈

[
0, ny

n{y} + ny

]
, (13)

where y ∈ Ωy = {1, . . . , K} and y ∈ ΩY .10

4.2 Logistic regression with a categorical covariate X
Now we consider the heterogenous situation expressed by a discrete covariate X,
which also has been depicted in Table 1. Again we can derive set-valued estimators
of the parameters of interest η = (π0A, π1A)T (and the auxiliary parameter ζ charac-
terizing the coarsening mechanisms) by taking the random set perspective, setting
up the corresponding likelihood function and applying the appropriate parameter
transformations. Proceeding in this way, for fixed treatment group x the cell counts

10The estimators of the probability components of the distribution of Yi prove to be the same
as arising from a belief functions like construction of empirical probabilities and also coincide with
the estimator obtained from cautious data completion, plugging in all potential precise sample
outcome compatible with the observations y1, . . . , yn (see, e.g., [2])
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(nxA, nxB, nxAB) follow a multinomial distribution, i.e.

(nxA, nxB, nxAB) ∼M(nx, (pxA, pxB, pxAB))

with conditional probabilities

pxy = P (Y = y|X = x)

(see [24, 1]).11 Therefore, the corresponding likelihood function for parameter ϑ =
(p0A, p1A, p0B, p1B)T (with p0AB = 1− p0A − p0B and p1AB = 1− p1A − p1B) is given
by

L(ϑ) = L(p0A, p1A, p0B, p1B) ∝ pn0A
0A · p

n0B
0B · p

n0AB
0AB · p

n1A
1A · p

n1B
1B · p

n1AB
1AB , (14)

For nx > 0 the maximum likelihood estimators for the parameters are unique and
given by (see [18])

p̂
(MLE)
xy = nxy

nx
, for x ∈ {0, 1}.

Reparametrizing the likelihood function of Equation (14) in terms of the parameters
of interest and the parameters of the observation model, i.e. γ = (π0A, π1A, qAB|xA, qAB|xB)T ,
we obtain the likelihood function

L(γ) = L(π0A, π1A, qAB|0A, qAB|1A, qAB|0B, qAB|1B) (15)
∝ [(1− qAB|0A) · π0A]n0A · [(1− qAB|1A) · π1A]n1A

·[(1− qAB|0B) · (1− π0A)]n0B · [(1− qAB|1B) · (1− π1A)]n1B

·[qAB|0A · π0A + qAB|0B · (1− π0A)]n0AB

·[qAB|1A · π1A + qAB|1B · (1− π1A)]n1AB .

Analogously to Section 4.1, we consider the mapping which connects both parametriza-
tions, Φ : [0, 1]6 → [0, 1]4 with

(16)

Φ



π0A
π1A
qAB|0A
qAB|1A
qAB|0B
qAB|1B


=


π0A · (1− qAB|0A)
π1A · (1− qAB|1A)

(1− π0A) · (1− qAB|0B)
(1− π1A) · (1− qAB|1B)

=


p0A
p1A
p0B
p1B



and observe that in this case it is also not injective and thus Γ̂, constructed along
the line of (4), is strictly set-valued, too. Illustrating Γ̂ again by the corresponding

11This corresponds to a product-multinomial sampling scheme (e.g. [24, 1]).
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projections along the axes, we obtain for given value x ∈ {0, 1} in the general case
with more than two categories in Y , i.e. y ∈ ΩY = {1, . . . , K} and y ∈ ΩY ,

π̂xy∈
[
nxy
nx

,

∑
y3y nxy

nx

]
, q̂y|xy∈

[
0, nxy
nxy + nxy

]
. (17)

Example (continued): Applying Equation (17) to our example, one obtains

π̂0A ∈
[130
319 ,

130 + 75
319

]
= [0.41, 0.64] ,

π̂1A ∈
[ 108
1092 ,

108 + 263
1092

]
= [0.10, 0.34] .

By recurring on the relation defined in Equation (1) and (2), and utilizing the
injectivity of the logistic function, the likelihood function considered here can also
be uniquely expressed in terms of the regression coefficients. In this way, instead
of the estimators π̂0A and π̂1A of Equation (17), equivalently one can consider the
estimators

β̂A0 ∈
[

log
(

n0A

n0 − n0A

)
, log

(
n0A + n0AB

n0B

) ]
(18)

β̂A1 ∈
[

log
(
n1A · (n0 − n0A)
(n1 − n1A) · n0A

)
, log

(
(n1A + n1AB) · n0B

n1B · (n0A + n0AB)

) ]
,

assuming all expressions to be well defined. Equations (18) can directly be obtained
via solving the relation of the logistic function for the regression coefficients and
incorporating the results of Equation (17).
Example (continued): In terms of the regression coefficients, we obtain the esti-
mates β̂0A ∈ [−0.37, 0.59] and β̂1A ∈ [−1.83, − 1.25].
Reminiscing about the derivation given here, we see that the categorical covariate
case for the logistic model – in strict contrast to the continuous case (see Section 6)
– in essence consists of a subgroup-specific consideration of the i.i.d. case.

5 Reliable incorporation of auxiliary information:
sensitivity parameters and partial identification

The set-valued estimators from Equation (12) (and analogously from Equation (17))
are a typical application of the methodology of partial identification, emphasizing
that only justified assumptions should be made which do not have to induce point
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identified parameters, but at least identify the parameter of interest in parts com-
pared to the set of parameters that seemed to be possible in the beginning of the
analysis (e.g., [14]). In this way, the trivial bounds [0, 1] have been refined substan-
tially.
In the spirit of partial identification and sensitivity analysis we can further refine
the set-valued estimators from Equation (12) and Equation (17) if, and also only if,
auxiliary information beyond the empirical evidence is available.12 To handle this
technically, we start with distinguishing and investigating point identifying addi-
tional assumptions, in order to utilize them as a technical mean to derive sensitivity
parameters, governing the incorporation of additional information.
Due to the fact that the imprecise point estimators in Equation (17) directly re-
sult from considering Equation (12) in a subgroup specific way, in Section 5.1 to
Section 5.3 the detailed presentation is confined on the i.i.d. case. In Section 5.4,
considering explicitly the regression model, another point-identifying assumption is
suggested, where again the corresponding generalization may be used as a sensitivity
parameter which allows the inclusion of partial knowledge.

5.1 Known coarsening
If one or both coarsening parameters qAB|A and qAB|B are known (and different from
1), one can conclude directly that the corresponding mapping Φ(·) from (10) is
injective as in this case the parameter πA can be uniquely related to the parameter
pA. Therefore, the set-valued estimator for πA specified in Equation (12) can be
shrunk to a single-valued estimator.
The exact value of the coarsening parameters is most often unknown, but in case
there is material information available that allows to bound it in a nontrivial interval,
the consideration here gives a first way to perform a systematic sensitivity analysis.
In most situations however such direct bounds will not be available. Therefore we
look for alternative ways to introduce auxiliary knowledge.

5.2 Coarsening at random (CAR)
If the coarsening is nonstochastic, the underlying degree of coarsening is predeter-
mined and known. For instance, if respondents are requested to give their answer in

12Vansteelandt et al. [27] suggest to determine a sensitivity parameter δ ∈ ∆ under which
the problem is identified and then to calculate the parameter of interest η for different values of
the sensitivity parameter, where the whole region of the resulting parameters of interest is called
Ignorance Region ir(η,∆) and the corresponding region of estimates Honestly Estimated Ignorance
Region (HEIR) îrn(η,∆). In order to account for statistical uncertainty due to finite sample size
as well, in context of sensitivity analysis uncertainty regions are addressed that either can be
constructed as covering the parameter of interest or the whole ignorance region with a probability
of at least (1− α) [10, 27].
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a grouped way and we assume that all respondents answer correctly, then the coars-
ening is predefined in the sense that there is an unique coarsened outcome for every
true answer. In the context of distinguishing between nonstochastic and stochastic
coarsening mechanisms, Heitjan and Rubin [9] investigated under which properties
the corresponding likelihood can be simplified to the so-called grouped likelihood
and introduced the concept of coarsening at random (CAR). This is a simplifying
property requesting that the probability qy|y is constant, no matter which true value
y is underlying as long as it fits to the observed value y. Thus, in the addressed
i.i.d. data situation, probability qAB|y takes the same value for all true values that
correspond with the observed data, namely true value “y = A” and “y = B”, i.e.,
under CAR, qAB|A = qAB|B is assumed. Illustrated by the running example, CAR
postulates that the probability of giving no suitable answer should not depend on
the true income category. In the dichotomous situation of this example, we are then
actually concerned with the assumption of missing at random (MAR) [13], which
can be regarded as a special case of CAR.
Focusing again on the i.i.d. case, incorporating the CAR assumption of qAB|A =
qAB|B into the likelihood in Equation (8) and in the observation model specifying
Φ(·), the situation simplifies substantially. Indeed, Φ is (almost) injective now, and
we get the empirically point identified estimators, corresponding to having simply
ignored the units with coarse values:

π̂A = nA
nA + nB

,

q̂AB|A = q̂AB|B = nAB
nA + nB + nAB

.

There are several ideal-type situations in which CAR can be justified indeed.13 Nev-
ertheless, this assumption must be treated with greatest care. Deviating from such
an ideal-type situation and wrongly assuming CAR can lead to a bias of an extent
that for sure destroys the practical relevance of the analysis, as is also illustrated in
Figure 3. There the estimation of πA under obstinately assumed CAR but varying
coarsening probabilities is evaluated by the median relative empirical bias π̂A−πA,true

|πA,true|
based on 100 simulated datasets (here with πA = 0.6).14 The relative median bias
increases the more one deviates from the case of CAR, indeed, up to a median
relative bias of almost 80%. It can be noted that one does not face a symmetric

13For instance, rounding, type I censoring, which is present if the censoring times are fixed, and
progressive type II censoring, which investigates censoring after the fixed d-th failure, in their pure
form are CAR [11, 8].

14Thereby, in all addressed situations characterized by different true underlying coarsening mech-
anisms (qAB|A and qAB|B varying between 0.1 and 0.9 in equidistant breaks of 0.1, respectively), the
assumption of CAR is involved into the estimation by plugging qAB|A = qAB|B into the likelihood
of Equation (8) that is maximized.
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problem. This can be explained by the fact that in the simulated data the number of
true values of A exceeds the number of true values of B and consequently there are
in total more coarsened values if qAB|A is larger compared to qAB|B which increases
uncertainty.
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Figure 3: Consequences for the median relative bias of π̂A if there is a deviation
from assumed CAR.

5.3 Ratio of coarsening parameters
In our context the paper by Nordheim [16] obtains new importance. He considers
the ratio between different mechanisms in the context of nonrandomly missing and
misclassified data. By fixing the ratio between the coarsening probabilities the cor-
responding maximum likelihood problem leads to quadratic equations, where one
solution is contained in the interval of π̂A from Equation (12), while the other solu-
tion lies outside of [0, 1] (cf. [16, p. 774]). Here we set R = qB|B

qA|A
= 1−qAB|B

1−qAB|A
slightly

modifying the ratio of Nordheim by referring to the probabilities of the complemen-
tary events. Treating this ratio between the probabilities of precise observation fixed
and including it into the likelihood problem in Section 4.1, unique, empirically point
identified estimators

π̂A = R · nA
nB + nA ·R

, (19)

q̂AB|A = nB · (R− 1) + nAB
n ·R

,
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are obtained. The construction of R and the estimators from Equation (19) directly
show that the case of assuming R = 1 corresponds to the assumption of CAR. In
this way, the incorporation of an assumed value R generalizes the CAR assumption.
As in the case of CAR, the impact of assuming a wrong value of R has been investi-
gated (results are available on request, see also [16]), where again a substantial bias
can occur.15

Because of the fact that the parameter of interest πA is identified given the typically
unknown value of R, the ratio R can be used as a sensitivity parameter. In many
cases it might be difficult to gain information about the exact value of R, but it
seems quite realistic that a rough evaluation of R can be derived from contentual
considerations, former studies or experiments.
Thus, it is interesting to investigate the gain of information resulting from implying
a factor R that is roughly known only compared to the situation without any ad-
ditional assumptions. Assessing a precise observation for category A as at least as
probable as for category B, we can impose the assumption R ≤ 1. Turning for in-
stance to the second group of the running example (i.e. nA = 108, nB = 721, nAB =
263) the corresponding HEIR16 îrn(πA,R+

0 ) =
[
nA

n
, nA+nAB

n

]
= [0.10, 0.34] can be

shrunk to ir(πA, [0, 1]) =
[
nA

n
, nA

nA+nB

]
= [0.10, 0.13]. Thus, even by implying a

vague assumption about the relation R valuable information about the parameter
of interest can be gained provided this assumption is satisfied indeed.
In more general cases of |ΩY | > 2, the relations between the precise observation
probabilities are not sufficient and relations concerning different coarsening mecha-
nisms have to be known in order to obtain point identified estimators. For instance
in case of ΩY = {A,B,C}, assumptions about relations R1 = qAB|B

qAB|A
, R2 = qAC|C

qAC|A
,

R3 = qBC|C
qBC|B

, R4 = qABC|C
qABC|B

and R5 = qABC|B
qABC|A

have to be imposed [16]. In this context,
we have shown (results are available upon request) that the relation that concerns
for instance category AC (e.g. R = qAC|C

qAC|A
) does only marginally influence the esti-

mation of the coarsening mechanism of other categories as for instance qAB|B. Apart
from this, similar trends as in the case with two categories seem to result.

5.4 Subgroup independent coarsening mechanism
In the situation with covariates, there is apart from CAR, i.e. q̂AB|xA = q̂AB|xB, an
alternative kind of uninformative coarsening, namely the independence of the un-

15The fact that there a similar variance of the estimators is obtained independently of the
amount of deviation from the true value of R shows drastically that such deviations do not increase
statistical uncertainty in the traditional sense and thus cannot be discovered by a traditional
statistical analysis.

16Considering the ratio R as a sensitivity parameter leads to the HEIR (see footnote 12 and,
e.g., [10, 27]).
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derlying covariate value. We will establish injectivity of the corresponding mapping
Φ(·) under an intuitive regularity condition and then, analogously to the procedure
in Sections 5.2 and 5.3, this idea will be generalized in Section 5.5 by again consid-
ering the corresponding fraction as a sensitivity parameter.
Imposing such subgroup independent coarsening mechanisms17 with

qAB|0A = qAB|1A =: qAB|A (20)
qAB|0B = qAB|1B =: qAB|B,

in the estimation problem of Section 4.2, the mapping of Equation (16) changes to

Φ : [0, 1]4 → [0, 1]4 with

Φ


π0A
π1A
qAB|A
qAB|B

 =


π0A · (1− qAB|A)
π1A · (1− qAB|A)

(1− π0A) · (1− qAB|B)
1− π1A) · (1− qAB|B)

 =


p0A
p1A
p0B
p1B

 . (21)

Note that Φ(·) is injective if

π0A 6= π1A and π0A /∈ {0, 1} and π1A /∈ {0, 1}, (22)

where the case π0A = π1A reproduces the i.i.d. case.

To prove this, note that injectiveness is violated whenever there exist two distinct vectors γ(1) and
γ(2), namely (π(1)

0A , π
(1)
1A , q

(1)
AB|A, q

(1)
AB|B)T and (π(2)

0A , π
(2)
1A , q

(2)
AB|A, q

(2)
AB|B)T , leading to the same ϑ,

namely (p0A, p1A, p0B , p1B), i.e.

π
(1)
0A · (1− q

(1)
AB|A) = π

(2)
0A · (1− q

(2)
AB|A) (23)

π
(1)
1A · (1− q

(1)
AB|A) = π

(2)
1A · (1− q

(2)
AB|A)

(1− π(1)
0A) · (1− q(1)

AB|B) = (1− π(2)
0A) · (1− q(2)

AB|B)

(1− π(1)
1A) · (1− q(1)

AB|B) = (1− π(2)
1A) · (1− q(2)

AB|B).

Assuming π1A 6= 0 as well as 1 − π1A 6= 0 (i.e. π1A 6= 1), we rearrange this system of equations
in Equation (23) by dividing the first equation by the second one and the third by the fourth and
obtain

π
(1)
0A

π
(1)
1A

= π
(2)
0A

π
(2)
1A

and 1− π(1)
0A

1− π(1)
1A

= 1− π(2)
0A

1− π(2)
1A

. (24)

As for all cases in Equation (22) there is only one solution that accounts for both conditions from
Equation (24) at the same time, the mapping Φ() in Equation (21) is injective in these situations.

17Illustrating this assumption by means of the example of Table 2, subgroup independent coars-
ening mechanism means that answering in a coarsened form, i.e., giving no suitable answer, does
not depend on the receipt of the unemployment benefit.
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In the i.i.d. case there are multiple solutions indeed (cf. Section 4.1), since both conditions from
Equation (24) are always valid.

Because of the injectiveness of the mapping in Equation (21), for all cases in Equa-
tion (22) the system of equations

(1− q̂AB|A) · π̂0A = n0A

n0
(= p̂

(MLE)
0A ) (25)

(1− q̂AB|A) · π̂1A = n1A

n1
(= p̂

(MLE)
1A )

(1− q̂AB|B) · (1− π̂0A) = n0B

n0
(= p̂

(MLE)
0B )

(1− q̂AB|B) · (1− π̂1A) = n1B

n1
(= p̂

(MLE)
1B )

can be solved uniquely and one obtains the estimators

π̂0A = n0A

n0

n1Bn0 − n1n0B

n0An1B − n0Bn1A
(26)

π̂1A = n1A

n1

n1Bn0 − n1n0B

n0An1B − n0Bn1A

q̂AB|A = 1− n0AnB1 − n0Bn1A

n1Bn0 − n1n0B

q̂AB|B = 1− n0An1B − n0Bn1A

n0An1 − n1An0
,

when these are inside the interval [0, 1]. Otherwise the maximum likelihood esti-
mation is more challenging, but it can be shown that asymptotically (n → ∞) the
estimators of Equation (26) typically for all cases in Equation (22) will be in the
interval [0, 1].
It has to be emphasized that in practical applications one must carefully reflect the
plausibility of the subgroup independent coarsening assumption of Equation (20).
In addition, the restrictions

p0A ≤
P (X = 0) · p1B − p0B · P (X = 1)

p1B − p0B · p1A

p0A

≤ 1− p0B

offer, at least under large sample sizes, via the condition

n0A ≤
n0 · n1B − n0B · n1

n1B − n0B · n1A

n0A

≤ n0A + n0AB,

a possibility to check whether the subgroup independent coarsening is appropriate
at all.
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5.5 Generalization of subgroup independent coarsening mech-
anism

There are situations in which one might have an idea about the magnitude of the
probabilities of precise observation in both subgroups. For instance, knowledge from
former studies could be available concerning the question whether respondents who
do receive Unemployment Benefit II rather report their income class in a precise or
a coarse way compared to the respondents that do not receive this benefit.
Analogously to the generalization of CAR in Section 5.3, we now generalize the as-
sumption of subgroup independent coarsening by considering the ratio between the
subgroup specific probabilities of precise observation, i.e., R1 = qA|1A

qA|0A
and R2 = qB|1B

qB|0B
,

where the case of R1 = R2 = 1 corresponds to assuming subgroup independent coars-
ening.
If the estimation problem of Section 4.2 is adapted to this assumption, the corre-
sponding mapping Φ(·) in Equation (16) becomes injective for all cases in Equa-
tion (22). This can be shown by considering the equations

π
(1)
0A · q

(1)
A|0A = π

(2)
0A · q

(2)
A|0A

π
(1)
1A ·R1 · q(1)

A|0A = π
(2)
1A ·R1 · q(2)

A|0A

(1− π(1)
0A) · q(1)

B|0B = (1− π(2)
0A) · q(2)

B|0B

(1− π(1)
1A) ·R2 · q(1)

B|0B = (1− π(2)
1A) ·R2 · q(2)

B|0B ,

where from dividing the first by the second equation and the third by the fourth
equation, the conditions of Equation (24) follow. Thus, for all cases in Equation (22)
there is only one solution and unique estimators

π̂0A = R1 · n0A

n0
· n1B · n0 −R2 · n1 · n0B

R1 · n0A · n1B −R2 · n0B · n1A
,

π̂1A = n1A

n1
· n1B · n0 −R2 · n1 · n0B

R1 · n0A · n1B −R2 · n0B · n1A
,

q̂AB|A = 1− R1 · n0A · n1B −R2 · n0B · n1A

R1 · (n1B · n0 −R2 · n1 · n0B) ,

and q̂AB|B = numerator
denominator ,

with numerator = n0B · (R1 · n0A · n1B − R2 · n0B · n1A) and denominator = n0 ·
(R1ṅ0A ·n1B −R2 ·n0B ·n1A)−R1 ·n0A · (n1B ·n0−R2 ·n1 ·n0B) are obtained, when
they are in the interval [0, 1]. One can note that for R1 = R2 = 1 the estimators of
Equation (26) result. The problem that the estimators are not within [0, 1] already
discussed in Section 5.4 as well as the considerations concerning generalizations to
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non-binary response variables Y sketched in Section 5.3 are applicable in this con-
text as well.
Again, inclusion of partial knowledge is possible by regarding R1 and R2 as sensitiv-
ity parameters and considering all estimators resulting from incorporating a region
of plausible values R.

6 Concluding remarks
We presented a maximum likelihood analysis of categorical data under epistemic
data imprecision. Our approach working with possibly set-valued maximum likeli-
hood estimators overcomes the dilemma of the precise probability based approaches,
often damned to debilitate contentual conclusions by the need to incorporate un-
justified formal assumptions to ensure identifiability of parameters. The explicit
reliance on an observation model specifying the coarsening process allows us to in-
corporate properly auxiliary information whenever it is present, in order to refine
appropriately estimates derived from the empirical evidence alone.
The crucial arguments were developed, mutatis mutandis, for the i.i.d. case as well
as a logistic regression based on one (or more) categorical covariates. From the ap-
plied point of view, an extension to metrical covariates is highly desirable. Although
then a subgroup specific investigation is not possible any more, appropriate general-
izations seem achievable in further work, especially for situations where sensitivity
parameters can be determined. However, to allow estimation of the underlying dis-
tribution from the data and to maintain the metric character, (partially) parametric
modelling is needed. This implicitly restricts the set of distributions considered and
in particular raises further issues in the understanding of statistical models as dis-
cussed, e.g., in Section 3.1 of [19] for linear regression modelling.
In addition to this, the invariance property of the likelihood under different para-
metrizations, which is the technical basis of our results, offers two further directions
of generalization. Further work may utilize these relationships beyond maximum
likelihood estimation, in order to derive likelihood-based regions taking finite sam-
ple variability into account explicitly. These estimators also should be compared
to confidence intervals derived along the lines of [27] in those situations where an
appropriate sensitivity parameter could be determined. Another area of further
research is the consideration of other “deficiency” processes, most notably misclassi-
fication, which can be formalized in a very similar way. Our methodology therefore
offers an alternative to, and a generalization to logistic regression of, recent work on
misclassification from a partial identification perspective [15, 12].
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