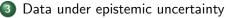
Coarse categorical data under ontologic and epistemic uncertainty

Julia Plaß

Ludwigs-Maximilians-University (LMU)

08th of September 2014

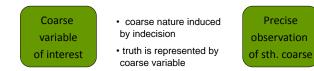

J.Plaß (LMU)

Coarse categorical data

08th of September 2014 1 / 17

Introduction to the problem

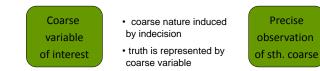
- Data under ontologic uncertainty
- Motivation
- Basic idea of analysis

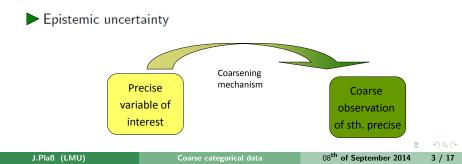


- Motivation
- Analysis of two different situations

Epistemic vs. ontic/ontologic uncertainty (I. Couso, D. Dubois, 2014)

Ontologic uncertainty

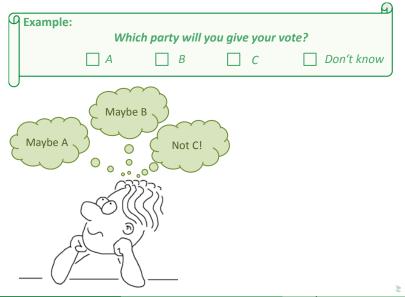


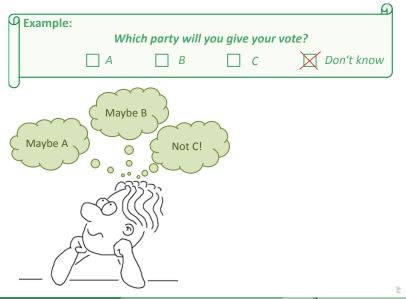

J.Plaß (LMU)

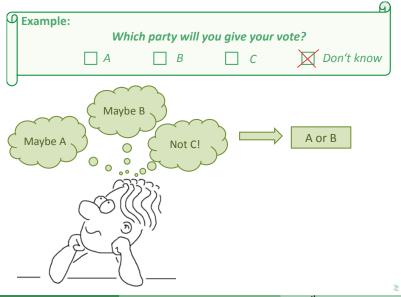
Precise

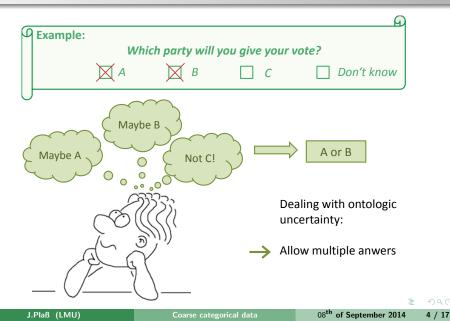
Epistemic vs. ontic/ontologic uncertainty (I. Couso, D. Dubois, 2014)

Ontologic uncertainty








J.Plaß (LMU)

J.Plaß (LMU)

certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	
very certain	SPD	-1	5	2	1	
certain	CD	4	3	3	1	
not that certain	GREEN	3	4	4	-1	
not certain at all	CD	-3	2	2	2	

< 局.

Э

certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	 Exemplary
very certain	SPD	-1	5	2	1	 Exemplary
certain	CD	4	3	3	1	 extraction of
not that certain	GREEN	3	4	4	-1	
not certain at all	CD	-3	2	2	2	 the dataset

Analysis:

Prediction

• Classical analysis - Vote of respondents who are certain:

イロト イポト イヨト イヨト

	certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	 Exemplary
v	ery certain	SPD	-1	5	2	1	 Exemplary
	certain	CD	4	3	3	1	 extraction of
not	that certain	GREEN	3	4	4	-1	
not	certain at all	CD	-3	2	2	2	 the dataset

Analysis:

J

Prediction

• Classical analysis - Vote of respondents who are certain:

• Dealing with ontologic uncertainty:

CD	SPD	GREEN	LEFT	OTHER
519	287	105	101	62
SPD-CD	GREEN-SPD	CD-OTHER	LEFT-SPD	GREEN-LEFT
34	34	24	14	13
GREEN-SPD-CD	SPD-CD-OTHER	LEFT-GREEN-SPD	SPD-OTHER	rare comb.
13	13	13	12	77

$$\hat{Bel}(CD) = \frac{519}{1321} = 0.39$$

$$\hat{P}l(CD) = \frac{519 + 34 + 24 + 13 + 13}{1321} = 0.45$$

$$\Rightarrow \frac{\text{Prediction for "CD":}}{[0.39, 0.45]}$$
Pla6 (1 MU)
Coarse categorical data
$$08^{\text{th}} \text{ of September 2014} = 5 / 12$$

certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	 r
very certain	SPD	-1	5	2	1	
certain	CD	4	3	3	1	 e
not that certain	GREEN	3	4	4	-1	
not certain at all	CD	-3	2	2	2	 t

Exemplary extraction of the dataset

Analysis:

Regression

- For reasons of explanation interpretation of selected β estimators only
- Reference category: "SPD"

• Classical analysis - Vote of respondents who are certain:

	Intercept	sexFEM	InfoNEWSPAPER	InfoRADIO	InfoWEB
CD	0.2914	0.2456	-0.0037	-0.1487	-0.6774

J.Plaß (LMU)

イロト イポト イヨト イヨト

Model under ontologic uncertainty

Data under ontologic uncertainty:

• Y_i : categorical random variable of nominal scale of measurement with $Y_i \subseteq \{a, b, ...\}$

• $m = |\mathcal{P}(\Omega) \setminus \emptyset|$: number of categories of Y_i

Model under ontologic uncertainty:

 \Rightarrow classical multinomial logit model with different number of categories:

The probability of occurence for category r = 1, 2, 3, ..., m-1 can be calculated by

$$P(Y_i = r | \mathbf{x}_i) = \frac{\exp(\mathbf{x}_i^T \boldsymbol{\beta}_r)}{1 + \sum_{s=1}^{m-1} \exp(\mathbf{x}_i^T \boldsymbol{\beta}_s)}$$

and for category m by

$$P(Y_i = m | \mathbf{x}_i) = \frac{1}{1 + \sum_{s=1}^{m-1} \exp(\mathbf{x}_i^T \boldsymbol{\beta}_s)}$$

J.Plaß (LMU)

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ● のへの

precise categories

certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	
very certain	SPD	-1	5	2	1	
certain	CD	4	3	3	1	
not that certain	GREEN	3	4	4	-1	
not certain at all	CD	-3	2	2	2	

Exemplary extraction of the dataset

Analysis:

Regression

- For reasons of explanation interpretation of selected β estimators only
- Reference category: "SPD"

• Classical analysis - Vote of respondents who are certain:

	Intercept	sexFEM	InfoNEWSPAPER	InfoRADIO	InfoWEB
CD	0.2914	0.2456	-0.0037	-0.1487	-0.6774

• Dealing with ontologic uncertainty:

	Intercept	sexFEM	InfoNEWSPAPER	InfoRADIO	InfoWEB
CD	0.4706	0.3135	-0.0784	0.1856	-0.5025
SPD-CD	-2.2007	0.4034	-1.2556	0.9476	0.1886
GREEN-SPD	-2.4432	0.9393	-1.3053	0.2300	0.1844

化压压 化压压

certainty	vote	assesCD	assesSPD	assesGREEN	assesLEFT	
very certain	SPD	-1	5	2	1	
certain	CD	4	3	3	1	
not that certain	GREEN	3	4	4	-1	
not certain at all	CD	-3	2	2	2	

Exemplary extraction of the dataset

Analysis:

Regression

- For reasons of explanation interpretation of selected β estimators only
- Reference category: "SPD"

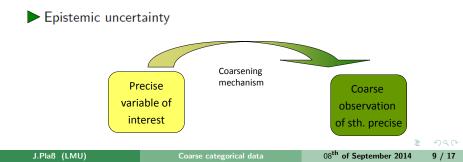
• Classical analysis - Vote of respondents who are certain:

	Intercept	sexFEM	InfoNEWSPAPER	InfoRADIO	InfoWEB
CD	0.2914	0.2456	-0.0037	-0.1487	-0.6774

• Dealing with ontologic uncertainty:

	Intercept	sexFEM	InfoNEWSPAPER	InfoRADIO	InfoWEB
CD	0.4706	0.3135	-0.0784	0.1856	-0.5025
SPD-CD	-2.2007	0.4034	-1.2556	0.9476	0.1886
GREEN-SPD	-2.4432	0.9393	-1.3053	0.2300	0.1844

化压压 化压压


Epistemic vs. ontologic uncertainty

Ontologic uncertainty

- coarse nature induced by indecision
- truth is represented by coarse variable

Precise observation of sth. coarse

When do data under epistemic uncertainty occur?

Reasons for coarse categorical data:

• Guarantee of anonymization, prevention of refusals

Example:

"Which kind of party did you elect?"

 \Box rather left $\hfill\square$ center $\hfill\square$ rather right

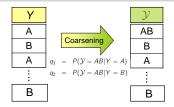
J.Plaß (LMU)

When do data under epistemic uncertainty occur?

Reasons for coarse categorical data:

• Guarantee of anonymization, prevention of refusals

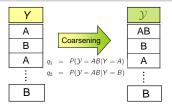
Example: "Which kind of party did you elect?"


 Different levels of reporting accuracy (lack of knowledge, vague question formulation)

Examples:

"Which car do you drive?"

10 / 17


Addressed data situations

< □ > < 同 >

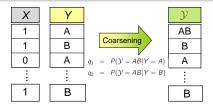
3

Addressed data situations

Two different situations will be regarded:

· IID-assumption

$$\pi_{iA} = \pi_A$$


- Constant coarsening mechanisms q_1 and q_2

J.Plaß (LMU)

化原因 化原因

3

Addressed data situations

Two different situations will be regarded:

· IID-assumption

$$\pi_{iA} = \pi_A$$

- Constant coarsening mechanisms q_1 and q_2

$$\frac{\text{Case 2 - Binary covariates,}}{\text{no intercept}}$$

$$\pi_{iA|X=1} = \frac{\exp(\beta_A)}{1 + \exp(\beta_A)}$$

$$\pi_{iA|X=0} = \frac{1}{2}$$

$$\cdot \text{ Constant coarsening mechanisms}$$

$$q_1 \text{ and } q_2$$

J.Plaß (LMU)

Case 1 - No covariates + IID-assumption

log-Likelihood under the iid assumption :

$$l(\pi_{A}, q_{1}, q_{2}) = \ln\left(\prod_{i:\mathcal{Y}_{i}=A} \underbrace{\mathcal{P}(\mathcal{Y}=A|Y=A)}_{(1-q_{1})} \pi_{iA} \prod_{i:\mathcal{Y}_{i}=B} \underbrace{\mathcal{P}(\mathcal{Y}=B|Y=B)}_{(1-q_{2})} (1-\pi_{iA}) \right)$$
$$\prod_{i:\mathcal{Y}_{i}=AB} \underbrace{\mathcal{P}(\mathcal{Y}=AB|Y=A)}_{q_{1}} \pi_{iA} + \underbrace{\mathcal{P}(\mathcal{Y}=AB|Y=B)}_{q_{2}} (1-\pi_{iA}) \right)$$
$$\stackrel{iid}{=} n_{A} \cdot [\ln(1-q_{1}) + \ln(\pi_{A})] + n_{B} \cdot [\ln(1-q_{2}) + \ln(1-\pi_{A})]$$

$$n_{AB}\cdot [q_1\pi_A+q_2(1-\pi_A))]$$

FOC:

I.)
$$\frac{\partial}{\partial \pi_A} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} (q_1 - q_2) + \frac{n_A}{\pi_A} - \frac{n_B}{1 - \pi_A} \stackrel{!}{=}$$

II.) $\frac{\partial}{\partial q_1} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} \pi_A - \frac{n_A}{1 - q_1} \stackrel{!}{=} 0$
III.) $\frac{\partial}{\partial q_2} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} (1 - \pi_A) - \frac{n_B}{1 - q_2} \stackrel{!}{=} 0$

J.Plaß (LMU)

0

3

Case 1 - No covariates + IID-assumption

log-Likelihood under the iid assumption :

$$l(\pi_{A}, q_{1}, q_{2}) = \ln\left(\prod_{i:\mathcal{Y}_{i}=A} \underbrace{\mathcal{P}(\mathcal{Y}=A|Y=A)}_{(1-q_{1})} \pi_{iA} \prod_{i:\mathcal{Y}_{i}=B} \underbrace{\mathcal{P}(\mathcal{Y}=B|Y=B)}_{(1-q_{2})} (1-\pi_{iA}) \right)$$
$$\prod_{i:\mathcal{Y}_{i}=AB} \underbrace{\mathcal{P}(\mathcal{Y}=AB|Y=A)}_{q_{1}} \pi_{iA} + \underbrace{\mathcal{P}(\mathcal{Y}=AB|Y=B)}_{q_{2}} (1-\pi_{iA}) \right)$$
$$\stackrel{iid}{=} n_{A} \cdot [\ln(1-q_{1}) + \ln(\pi_{A})] + n_{B} \cdot [\ln(1-q_{2}) + \ln(1-\pi_{A})]$$
$$n_{AB} \cdot [q_{1}\pi_{A} + q_{2}(1-\pi_{A}))]$$

FOC:

I.)
$$\frac{\partial}{\partial \pi_A} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} (q_1 - q_2) + \frac{n_A}{\pi_A} - \frac{n_B}{1 - \pi_A} \stackrel{!}{=} 0$$

II.) $\frac{\partial}{\partial q_1} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} \pi_A - \frac{n_A}{1 - q_1} \stackrel{!}{=} 0$
III.) $\frac{\partial}{\partial q_2} = \frac{n_{AB}}{q_1 \pi_A + q_2(1 - \pi_A)} (1 - \pi_A) - \frac{n_B}{1 - q_2} \stackrel{!}{=} 0$

Neccessary and sufficient condition for estimators $(\hat{\pi}_A, \hat{q}_1, \hat{q}_2)$

$$\frac{n_{AB}}{n} = \hat{q}_1 \cdot \hat{\pi}_A + \hat{q}_2 \cdot (1 - \hat{\pi}_A)$$

J.Plaß (LMU)

Involved assumptions:

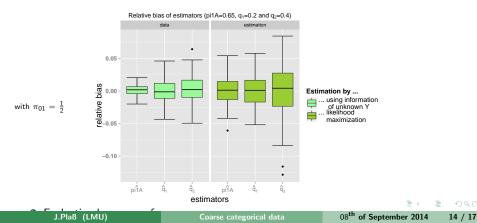
• No intercept β_0

$$\Rightarrow \pi_{iA|X_i=1} = \frac{\exp(\beta_A)}{1 + \exp(\beta_A)} \text{ and } \pi_{iA|X_i=0} = \frac{1}{2}$$

Involved assumptions:

• No intercept β_0

 $\Rightarrow \pi_{iA|X_i=1} = \frac{\exp(\beta_A)}{1 + \exp(\beta_A)} \text{ and } \pi_{iA|X_i=0} = \frac{1}{2}$


• Constant coarsening mechanisms q₁ and q₂:

Example: "Do you regularly steal candy (\bowtie) out of your mother's candy box?" Asked: girls (g) and boys (b)

Х	Y	\mathcal{Y}		
g	\bowtie	\boxtimes or \boxtimes	$P(\mathcal{Y} = \overline{\bowtie} \text{ or } \overline{\bowtie} Y = \bowtie, X = g) =$	$P(\mathcal{Y} = \boxtimes \text{ or } \boxtimes Y = \boxtimes, X)$
g	\boxtimes	\boxtimes	$P(\mathcal{Y} = \boxtimes \text{ or } \boxtimes Y = \boxtimes, X = g) =$	$= P(\mathcal{V} = \boxtimes \text{ or } \boxtimes Y = \boxtimes)$
g	\bowtie	\bowtie		. (5
Ь	\bowtie	\boxtimes or \boxtimes		
Ь	\bowtie	\bowtie	11	
b	\boxtimes	\boxtimes	the coarsening mech	anisms do not
Ь	\boxtimes	\boxtimes	depend on sub	
			4	-
J.Plaß (LMU)			Coarse categorical data	08 th of September 2014

log-Likelihood involving binary covariate X:

$$\begin{split} l(\pi_{0A}, \pi_{1A}, q_1, q_2) &= n_{1A} \cdot \left[\ln(1 - q_1) + \ln(\pi_{1A}) \right] + n_{0A} \cdot \left[\ln(1 - q_1) + \ln(\pi_{0A}) \right] \\ &+ n_{1B} \cdot \left[\ln(1 - q_2) + \ln(1 - \pi_{1A}) \right] + n_{0B} \cdot \left[\ln(1 - q_2) + \ln(1 - \pi_{0A}) \right] \\ &+ n_{1AB} \cdot \left[q_1 \pi_{1A} + q_2 (1 - \pi_{1A}) \right] + n_{0AB} \cdot \left[q_1 \pi_{0A} + q_2 (1 - \pi_{0A}) \right] \end{split}$$

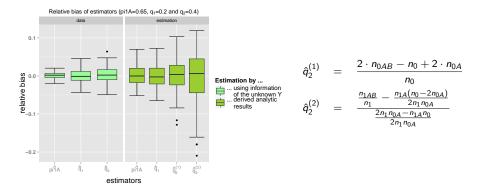
Questions / Discussion suggestions:

• Is this result reasonable? (Remember: The coarsening mechanism does not depend on the values of X)

Questions / Discussion suggestions:

- Is this result reasonable? (Remember: The coarsening mechanism does not depend on the values of X)
- Is it possible to derive those estimators by means of equations like in the *iid* case, but now for each subgroup of X?

$$\begin{array}{lcl} \frac{n_{1AB}}{n_1} & = & \hat{q}_1 \cdot \hat{\pi}_{1A} + \hat{q}_2 \cdot (1 - \hat{\pi}_{1A}) \\ \frac{n_{0AB}}{n_0} & = & \hat{q}_1 \cdot \hat{\pi}_{0A} + \hat{q}_2 \cdot (1 - \hat{\pi}_{0A}) \\ \frac{n_{1A}}{n_1} & = & (1 - \hat{q}_1) \cdot \hat{\pi}_{1A} \\ \frac{n_{0A}}{n_0} & = & (1 - \hat{q}_1) \cdot \hat{\pi}_{0A} \end{array}$$


イロト イポト イヨト イヨト

Questions / Discussion suggestions:

- Is this result reasonable? (Remember: The coarsening mechanism does not depend on the values of X)
- Is it possible to derive those estimators by means of equations like in the *iid* case, but now for each subgroup of X?

$$\begin{array}{rcl} \frac{n_{1AB}}{n_{1}} & = & \hat{q}_{1} \cdot \hat{\pi}_{1A} + \hat{q}_{2} \cdot (1 - \hat{\pi}_{1A}) \\ \frac{n_{0AB}}{n_{0}} & = & \hat{q}_{1} \cdot \hat{\pi}_{0A} + \hat{q}_{2} \cdot (1 - \hat{\pi}_{0A}) \\ \frac{n_{1A}}{n_{1}} & = & (1 - \hat{q}_{1}) \cdot \hat{\pi}_{1A} \\ \frac{n_{0A}}{n_{0}} & = & (1 - \hat{q}_{1}) \cdot \hat{\pi}_{0A} \end{array} \right) \qquad \Longrightarrow \qquad \begin{array}{l} \begin{array}{l} \text{Resulting estimators} \\ \hat{\pi}_{1A} & = & \frac{n_{1A} \cdot n_{0}}{2 \cdot n_{1} \cdot n_{0A}} \\ \hat{q}_{1} & = & 1 - 2 \cdot \frac{n_{0A}}{n_{0}} \\ \end{array} \\ \begin{array}{l} \text{and } \hat{q}_{2}^{(1)} \text{ and } \hat{q}_{2}^{(2)} \end{array}$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- Important to distinguish between epistemic and ontologic uncertainty
- One can deal with ontologic uncertainty by redefining the sample space
- In case of …
 - ... iid variables under epistemic uncertainty, a set of estimators results characterized by a special condition
 - ... being a binary covariate available, precise real valued point estimators seem to result

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Couso, I. and Dubois. D.

Statistical reasoning with set-valued information: Ontic vs. epistemic views. IJAR. 2014.

📎 Heitjan, D. and Rubin, D.

Ignorability and Coarse Data, Annals of Statistics, 1991.

🛸 Matheron. G.

Random Sets and Integral Geometry, Wiley New York, 1975.

Plaß, J.

Coarse categorical data under epistemic and ontologic uncertainty: Comparison and extension of some approaches, master's thesis, 2013